Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 21, 2026
-
null (Ed.)Water filtration membranes with advanced ion selectivity are urgently needed for resource recovery and the production of clean drinking water. This work investigates the separation capabilities of cross-linked zwitterionic copolymer membranes, a self-assembled membrane system featuring subnanometer zwitterionic nanochannels. We demonstrate that selective zwitterion–anion interactions simultaneously control salt partitioning and diffusivity, with the permeabilities of NaClO 4 , NaI, NaBr, NaCl, NaF, and Na 2 SO 4 spanning roughly three orders of magnitude over a wide range of feed concentrations. We model salt flux using a one-dimensional transport model based on the Maxwell–Stefan equations and show that diffusion is the dominant mode of transport for 1:1 sodium salts. Differences in zwitterion–Cl − and zwitterion–F − interactions granted these membranes with the ultrahigh Cl − /F − permselectivity ( P Cl- /P F- = 24), enabling high fluoride retention and high chloride passage even from saline mixtures of NaCl and NaF.more » « less