skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yuan, Shuaishuai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.The radio pulsar PSR J0742−2822 is known to exhibit rapid changes between different pulse profile states that correlate with changes in its spin-down rate. However, the connection between these variations and the glitch activity of the pulsar remains unclear. Aims.We aim to study the evolution of the pulse profile and spin-down rate of PSR J0742−2822 in the period MJD 58810–60149 (November 2019 to July 2023), which includes the glitch on MJD 59839 (September 2022). In particular, we looked for pulse profile or spin-down changes associated with the 2022 glitch. Methods.We observed PSR J0742−2822 with a high cadence from the Argentine Institute of Radioastronomy (IAR) between November 2019 and July 2023. We used standard timing tools to characterise the times of arrival of the pulses and to study the pulsar rotation and, particularly, the oscillations ofν̇. We also studied the evolution of the pulse profile. For both of them, we compared their behaviour before and after the 2022 glitch. Results.With respect toν̇, we find that oscillations diminished in amplitude after the glitch. We find four different components contributing to the pre-glitchν̇oscillations, and only one component after the glitch. With regard to the emission, we find the pulse profile has two main peaks. We detect an increase in theW50of the total pulse profile of ∼12% after the glitch and we find the amplitude of the trailing peak increased with respect to the amplitude of the leading one after the glitch. Conclusions.We find significant changes in the pulse profile and the spin-down rate of PSR J0742−2822 after its 2022 glitch. These results suggest that there is a strong coupling between the internal superfluid of the neutron star and its magnetosphere, and that pulse profile changes may be led by this coupling instead of being led purely by magnetospheric effects. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Context. The Argentine Institute of Radio astronomy (IAR) is equipped with two single-dish 30 m radio antennas capable of performing daily observations of pulsars and radio transients in the southern hemisphere at 1.4 GHz. Aims. We aim to introduce to the international community the upgrades performed and to show that the IAR observatory has become suitable for investigations in numerous areas of pulsar radio astronomy, such as pulsar timing arrays, targeted searches of continuous gravitational waves sources, monitoring of magnetars and glitching pulsars, and studies of a short time scale interstellar scintillation. Methods. We refurbished the two antennas at IAR to achieve high-quality timing observations. We gathered more than 1000 h of observations with both antennas in order to study the timing precision and sensitivity they can achieve. Results. We introduce the new developments for both radio telescopes at IAR. We present daily observations of the millisecond pulsar J0437−4715 with timing precision better than 1 μ s. We also present a follow-up of the reactivation of the magnetar XTE J1810–197 and the measurement and monitoring of the latest (Feb. 1, 2019) glitch of the Vela pulsar (J0835–4510). Conclusions. We show that IAR is capable of performing pulsar monitoring in the 1.4 GHz radio band for long periods of time with a daily cadence. This opens up the possibility of pursuing several goals in pulsar science, including coordinated multi-wavelength observations with other observatories. In particular, daily observations of the millisecond pulsar J0437−4715 would increase the sensitivity of pulsar timing arrays. We also show IAR’s great potential for studying targets of opportunity and transient phenomena, such as magnetars, glitches, and fast-radio-burst sources. 
    more » « less
  3. Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026
  4. Free, publicly-accessible full text available November 1, 2026
  5. Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV. 
    more » « less
    Free, publicly-accessible full text available October 28, 2026
  6. Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses 13 7 18 + 23 M and 10 1 50 + 22 M (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of 0.4 0 0.25 + 0.27 , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— 0.9 0 0.19 + 0.10 and 0.8 0 0.52 + 0.20 , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130Mshould be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200Mform through gravitational-wave-driven mergers. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026