skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Low, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The study of di-Higgs events, both resonant and non-resonant, plays a crucial role in understanding the fundamental interactions of the Higgs boson. In this work we consider di-Higgs events decaying into four b-quarks and propose to improve the experimental sensitivity by utilizing a novel machine learning algorithm known as Symmetry Preserving Attention Network (Spa-Net) — a neural network structure whose architecture is designed to incorporate the inherent symmetries in particle reconstruction tasks. We demonstrate that the Spa-Net can enhance the experimental reach over baseline methods such as the cut-based and the Dense Neural Network-based analyses. At the Large Hadron Collider, with a 14-TeV center-of-mass energy and an integrated luminosity of 300 fb−1, the Spa-Net allows us to establish 95% C.L. upper limits in resonant production cross-sections that are 10% to 45% stronger than baseline methods. For non-resonant di-Higgs production, Spa-Net enables us to constrain the self-coupling that is 9% more stringent than the baseline method. 
    more » « less
  2. It has long been recognized that the scattering of electroweak particles at very high energies is dominated by vector boson fusion, which probes the origin of electroweak symmetry breaking and offers a unique window into the ultraviolet regime of the Standard Model (SM). Previous studies assume SM-like couplings and rely on the effective W approximation (or electroweak parton distribution), whose validity is well established within the SM but not yet studied in the presence of anomalous Higgs couplings. In this work, we critically examine the electroweak production of two Higgs bosons in the presence of anomalous V V h and V V h h couplings. We compute the corresponding helicity amplitudes and compare the cross section results in the effective W approximation with the full fixed-order calculation. In particular, we identify two distinct classes of anomalous Higgs couplings, whose effects are not captured by vector boson fusion and effective W approximation. Such very-high-energy electroweak scatterings can be probed at the muon shot, a multi-TeV muon collider upon which we base our study, although similar considerations apply to other high-energy colliders. Published by the American Physical Society2024 
    more » « less
  3. Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  4. Abstract A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work. 
    more » « less