skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Low, Philip S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adoptive chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have shown promise in treating various cancers. However, limited immunological memory and access to sufficient numbers of allogenic donor cells have hindered their broader preclinical and clinical applications. Here, we first assess eight different CAR constructs that use an anti-PD-L1 nanobody and/or universal anti-fluorescein (FITC) single-chain variable fragment (scFv) to enhance antigen-specific proliferation and anti-tumor cytotoxicity of NK-92 cells against heterogenous solid tumors. We next genetically engineer human pluripotent stem cells (hPSCs) with optimized CARs and differentiate them into functional dual CAR-NK cells. The tumor microenvironment responsive anti-PD-L1 CAR effectively promoted hPSC-NK cell proliferation and cytotoxicity through antigen-dependent activation of phosphorylated STAT3 (pSTAT3) and pSTAT5 signaling pathways via an intracellular truncated IL-2 receptor β-chain (ΔIL-2Rβ) and STAT3-binding tyrosine-X-X-glutamine (YXXQ) motif. Anti-tumor activities of PD-L1-induced memory-like hPSC-NK cells were further boosted by administering a FITC-folate bi-specific adapter that bridges between a programmable anti-FITC CAR and folate receptor alpha-expressing breast tumor cells. Collectively, our hPSC CAR-NK engineering platform is modular and could constitute a realistic strategy to manufacture off-the-shelf CAR-NK cells with immunological memory-like phenotype for targeted immunotherapy. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Summary

    Many hypotheses have been proposed to explain how a glutamate to valine substitution in sickle haemoglobin (HbS) can cause sickle cell disease (SCD). We propose and document a new mechanism in which elevated tyrosine phosphorylation of Band 3 initiates sequelae that cause vaso‐occlusion and the symptoms of SCD. In this mechanism, denaturation of HbS and release of heme generate intracellular oxidants which cause inhibition of erythrocyte tyrosine phosphatases, thus permitting constitutive tyrosine phosphorylation of Band 3. This phosphorylation in turn induces dissociation of the spectrin‐actin cytoskeleton from the membrane, leading to membrane weakening, discharge of membrane‐derived microparticles (which initiate the coagulation cascade) and release of cell‐free HbS (which consumes nitric oxide) and activates the endothelium to express adhesion receptors). These processes promote vaso‐occlusive events which cause SCD. We further show that inhibitors of Syk tyrosine kinase block Band 3 tyrosine phosphorylation, prevent release of cell‐free Hb, inhibit discharge of membrane‐derived microparticles, increase sickle cell deformability, reduce sickle cell adhesion to human endothelial cells, and enhance sickle cell flow through microcapillaries. In view of reports that imatinib (a Syk inhibitor) successfully treats symptoms of sickle cell disease, we suggest that Syk tyrosine kinase inhibitors warrant repurposing as potential treatments for SCD.

     
    more » « less