skip to main content


Search for: All records

Creators/Authors contains: "Lowe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As climate change intensifies, hurricanes and weather-related disasters have been increasingly frequent and severe, impacting regions like the U.S. Gulf Coast with repeated hurricanes. While acute and short-term health impacts are well-described, impacts on longer-term and chronic conditions such as hypertension remain underexplored. This study examines the association between repeated hurricane exposure and hypertension risk in survivors. We used data from the Resilience in Survivors of Katrina project, a longitudinal (2003–2018) cohort of predominantly Black, low-income mothers affected by Hurricane Katrina. A sample of 505 women who were not hypertensive pre-Katrina was analyzed. Cumulative exposure was defined as the number of hurricanes experienced post-Katrina, assessed at several survey waves over 12 years. Logistic regression estimated associations between hurricane exposure and hypertension in 2016–18, with mediation analyses exploring the indirect effect via psychological distress (PD). In adjusted models, exposure to two hurricanes was associated with a 61% increase in hypertension odds (OR = 1.61, 95% CI: 1.00, 2.63) and exposure to three or more with 87% increased odds (OR = 1.87, 95% CI: 1.01, 3.47), relative to exposure to only one hurricane. The indirect effect from hurricane exposure to hypertension via PD was statically significant (95% CI: 1.01, 1.09). Findings highlight a novel link between cumulative disaster exposure and hypertension, with PD as a potential mediator. This suggests that repeated exposure to hurricanes not only impacts mental health but may also contribute to adverse physical health outcomes. Addressing both mental and physical health in disaster response, especially for vulnerable populations, is crucial.

     
    more » « less
  2. Abstract

    While data-driven approaches demonstrate great potential in atmospheric modeling and weather forecasting, ocean modeling poses distinct challenges due to complex bathymetry, land, vertical structure, and flow non-linearity. This study introduces OceanNet, a principled neural operator-based digital twin for regional sea-suface height emulation. OceanNet uses a Fourier neural operator and predictor-evaluate-corrector integration scheme to mitigate autoregressive error growth and enhance stability over extended time scales. A spectral regularizer counteracts spectral bias at smaller scales. OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream), focusing on the task of seasonal prediction for Loop Current eddies and the Gulf Stream meander. Trained using historical sea surface height (SSH) data, OceanNet demonstrates competitive forecast skill compared to a state-of-the-art dynamical ocean model forecast, reducing computation by 500,000 times. These accomplishments demonstrate initial steps for physics-inspired deep neural operators as cost-effective alternatives to high-resolution numerical ocean models.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Premise

    Leaf mass per area (LMA) is a widely used functional trait in both neobotanical and paleobotanical research that provides a window into how plants interact with their environment. Paleobotanists have used site‐level measures of LMA as a proxy for climate, biome, deciduousness, and community‐scale plant strategy, yet many of these relationships have not been grounded in modern data. In this study, we evaluated LMA from the paleobotanical perspective, seeking to add modern context to paleobotanical interpretations and discover what a combined modern and fossil data set can tell us about how LMA can be best applied toward interpreting plant communities.

    Methods

    We built a modern data set by pulling plant trait data from the TRY database, and a fossil data set by compiling data from studies that have used the petiole‐width proxy for LMA. We then investigated the relationships of species‐mean, site‐mean, and site‐distribution LMA with different climatic, phylogenetic, and physiognomic variables.

    Results

    We found that LMA distributions are correlated with climate, site taxonomic composition, and deciduousness. However, the relative contributions of these factors are not distinctive, and ultimately, LMA distributions cannot accurately reconstruct the biome or climate of an individual site.

    Conclusions

    The correlations that make up the leaf economics spectrum are stronger than the correlations between LMA and climate, phylogeny, morphospace, or depositional environment. Fossil LMA should be understood as the culmination of the influences of these variables rather than as a predictor.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  4. Huang, Huasheng (Ed.)

    The fossil record of the U.S. Pacific Northwest preserves many Middle Miocene floras with potential for revealing long-term climate-vegetation dynamics during the Miocene Climatic Optimum. However, the possibility of strong, eccentricity-paced climate oscillations and concurrent, intense volcanism may obscure the signature of prevailing, long-term Miocene climate change. To test the hypothesis that volcanic disturbance drove Middle Miocene vegetation dynamics, high-resolution, stratigraphic pollen records and other paleobotanical data from nine localities of the Sucker Creek Formation were combined with sedimentological and geochemical evidence of disturbance within an updated chronostratigraphic framework based on new U-Pb zircon ages from tuffs. The new ages establish a refined, minimum temporal extent of the Sucker Creek Formation, ~15.8 to ~14.8 Ma, and greatly revise the local and regional chronostratigraphic correlations of its dispersed outcrop belt. Our paleoecological analysis at one ~15.52 Ma locality reveals two abrupt shifts in pollen spectra coinciding with the deposition of thick ash-flow tuffs, wherein vegetation dominated by Cupressaceae/Taxaceae, probably representing aGlyptostrobus oregonensisswamp, and upland conifers was supplanted by early-successional forests with abundantAlnusandBetula. Another ephemeral shift from Cupressaceae/Taxaceae swamp taxa in favor of upland conifersPinusandTsugacorrelates with a shift from low-Ti shale to high-Ti claystone, suggesting a link between altered surface hydrology and vegetation. In total, three rapid vegetation shifts coincide with ash-flow tuffs and are attributed to volcanic disturbance. Longer-term variability between localities, spanning ~1 Myr of the Miocene Climatic Optimum, is chiefly attributed to eccentricity-paced climate change. Overall, Succor Creek plant associations changed frequently over ≤105years timespans, reminiscent of Quaternary vegetation records. Succor Creek stratigraphic palynology suggests that numerous and extensive collection of stratigraphically controlled samples is necessary to understand broader vegetation trends through time.

     
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  5. Ocean warming is increasing organismal oxygen demand, yet at the same time the ocean’s oxygen supply is decreasing. For a patch of habitat to remain viable, there must be a minimum level of environmental oxygen available for an organism to fuel its metabolic demand—quantified as its critical oxygen partial pressure (pO2crit). The temperature-dependence ofpO2critsets an absolute lower boundary on aerobically viable ocean space for a species, yet whether certain life stages or geographically distant populations differ in their temperature-dependent hypoxia tolerance remains largely unknown. To address these questions, we used the purple sea urchinStrongylocentrotus purpuratusas a model species and measuredpO2critfor 3 populations of adult urchins (Clallam Bay, WA [n = 39], Monterey Bay, CA [91], San Diego, CA [34]) spanning 5-22°C and for key embryonic and larval developmental phases (blastula [n = 11], gastrula [21], prism [31], early-pluteus [21], late-pluteus [14], settled [12]) at temperatures of 10-19°C. We found that temperature-dependent hypoxia tolerance is consistent among adult populations exposed to different temperature and oxygen regimes, despite variable basal oxygen demands, suggesting differential capacity to provision oxygen. Moreover, we did not detect evidence for a hypoxia tolerance bottleneck for any developmental phase. Earlier larval phases are associated with higher hypoxia tolerance and greater temperature sensitivity, while this pattern shifts towards lower hypoxia tolerance and reduced temperature sensitivity as larvae develop. Our results indicate that, at least forS. purpuratus,models quantifying aerobically viable habitat based onpO2crit-temperature relationships from a single adult population will conservatively estimate viable habitat.

     
    more » « less
    Free, publicly-accessible full text available July 4, 2025
  6. Free, publicly-accessible full text available May 27, 2025
  7. Abstract

    Studies of morphology and developmental patterning in adult stages of many invertebrates are hindered by opaque structures, such as shells, skeletal elements, and pigment granules that block or refract light and necessitate sectioning for observation of internal features. An inherent challenge in studies relying on surgical approaches is that cutting tissue is semi-destructive, and delicate structures, such as axonal processes within neural networks, are computationally challenging to reconstruct once disrupted. To address this problem, we developed See-Star, a hydrogel-based tissue clearing protocol to render the bodies of opaque and calcified invertebrates optically transparent while preserving their anatomy in an unperturbed state, facilitating molecular labeling and observation of intact organ systems. The resulting protocol can clear large (> 1 cm3) specimens to enable deep-tissue imaging, and is compatible with molecular techniques, such as immunohistochemistry and in situ hybridization to visualize protein and mRNA localization. To test the utility of this method, we performed a whole-mount imaging study of intact nervous systems in juvenile echinoderms and molluscs and demonstrate that See-Star allows for comparative studies to be extended far into development, facilitating insights into the anatomy of juveniles and adults that are usually not amenable to whole-mount imaging.

     
    more » « less
  8. Free, publicly-accessible full text available May 27, 2025
  9. We lack a strong understanding of how organisms with complex life histories respond to climate variation. Many stream-associated species have multi-stage life histories that are likely to influence the demographic consequences of floods and droughts. However, tracking stage specific demographic responses requires high-resolution, long-term data that are rare. We used eight years of capture-recapture data for the headwater stream salamander Gyrinophilus porphyriticus to quantify the effects of flooding and drying magnitude on stage-specific vital rates and population growth. Drying reduced larval recruitment but increased the probability of metamorphosis (i.e., adult recruitment). Flooding reduced adult recruitment but had no effect on larval recruitment. Larval and adult survival declined with flooding but were unaffected by drying. Annual population growth rates (lambda, ) declined with flooding and drying. Lambda also declined over the study period (2012 – 2021), although mean  was 1.0 over this period. Our results indicate that G. porphyriticus populations are resilient to hydrologic variation due to compensatory effects on recruitment of larvae vs. adults (i.e., reproduction vs. metamorphosis). Complex life cycles may enable this resilience to climate variation by creating opportunities for compensatory demographic responses across stages. However, more frequent and intense hydrologic variation in the latter half of this study contributed to a decline in  over time, suggesting that increasing environmental variability poses a threat even when demographic compensation occurs. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025