skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lowenstein, Tim_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Great Salt Lake (GSL), Utah, is a hypersaline terminal lake in the Great Basin, and the remnant of the late glacial Lake Bonneville. Holocene hydroclimate variations cannot be interpreted from the shoreline record, but instead can be investigated by proxies archived in the sediments. GLAD1‐GSL00‐1B was cored in 2000 and recently dated by radiocarbon for the Holocene section with the top 11 m representing ∼7 ka to present. Sediment samples every 30 cm (∼220 years) were studied for the full suite of microbial membrane lipids, including those responsive to temperature and salinity. The Archaeol and Caldarchaeol Ecometric (ACE) index detects the increase in lipids of halophilic archaea, relative to generalists, as salinity increases. We find Holocene ACE values ranged from 81 to 98, which suggests persistent hypersalinity with <50 g/L variability across 7.2 ka. The temperature proxy, MBTʹ5Me, yields values similar to modern mean annual air temperature for months above freezing (MAF = 15.7°C) over the last 5.5 ka. Several glycerol dialkyl glycerol tetraether metrics show a step shift in microbial communities and limnology at 5.5 ka. Extended archaeol detects elevated salinity during the regional mid‐Holocene drought, not readily detected in the ACE record that is often near the upper limit of the index. We infer that the mid‐Holocene GSL was shallower and saltier than the late Holocene. The current drying may be returning the lake to conditions not seen since the mid‐Holocene. 
    more » « less