skip to main content


Search for: All records

Creators/Authors contains: "Lower, M. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Long-period radio transients are an emerging class of extreme astrophysical events of which only three are known. These objects emit highly polarized, coherent pulses of typically a few tens of seconds duration, and minutes to approximately hour-long periods. Although magnetic white dwarfs and magnetars, either isolated or in binary systems, have been invoked to explain these objects, a consensus has not emerged. Here we report on the discovery of ASKAP J193505.1+214841.0 (henceforth ASKAP J1935+2148) with a period of 53.8 minutes showing 3 distinct emission states—a bright pulse state with highly linearly polarized pulses with widths of 10–50 seconds; a weak pulse state that is about 26 times fainter than the bright state with highly circularly polarized pulses of widths of approximately 370 milliseconds; and a quiescent or quenched state with no pulses. The first two states have been observed to progressively evolve over the course of 8 months with the quenched state interspersed between them suggesting physical changes in the region producing the emission. A constraint on the radius of the source for the observed period rules out an isolated magnetic white-dwarf origin. Unlike other long-period sources, ASKAP 1935+2148 shows marked variations in emission modes reminiscent of neutron stars. However, its radio properties challenge our current understanding of neutron-star emission and evolution.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. ABSTRACT

    We report the detection of FRB20191107B with UTMOST radio telescope at a dispersion measure (DM) of 714.9 pc cm−3. The burst consists of three components, the brightest of which has an intrinsic width of only 11.3 μs and a scattering tail with an exponentially decaying time-scale of 21.4 μs measured at 835 MHz. We model the sensitivity of UTMOST and other major fast radio burst (FRB) surveys to such narrow events. We find that $\gt 60{{\ \rm per\, cent}}$ of FRBs like FRB20191107B are being missed, and that a significant population of very narrow FRBs probably exists and remains underrepresented in these surveys. The high DM and small scattering time-scale of FRB20191107B allows us to place an upper limit on the strength of turbulence in the intergalactic medium, quantified as scattering measure (SM), of SMIGM < 8.4 × 10−7 kpc m−20/3. Almost all UTMOST FRBs have full phase information due to real-time voltage capture, which provides us with the largest sample of coherently dedispersed single burst FRBs. Our 10.24 μs time resolution data yields accurately measured FRB scattering time-scales. We combine the UTMOST FRBs with 10 FRBs from the literature and find no obvious evidence for a DM-scattering relation, suggesting that IGM is not the dominant source of scattering in FRBs. We support the results of previous studies and identify the local environment of the source in the host galaxy as the most likely region that dominates the observed scattering of our FRBs.

     
    more » « less
  3. Abstract

    The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA.

     
    more » « less
  4. ABSTRACT XTE J1810−197 (J1810) was the first magnetar identified to emit radio pulses, and has been extensively studied during a radio-bright phase in 2003–2008. It is estimated to be relatively nearby compared to other Galactic magnetars, and provides a useful prototype for the physics of high magnetic fields, magnetar velocities, and the plausible connection to extragalactic fast radio bursts. Upon the rebrightening of the magnetar at radio wavelengths in late 2018, we resumed an astrometric campaign on J1810 with the Very Long Baseline Array, and sampled 14 new positions of J1810 over 1.3 yr. The phase calibration for the new observations was performed with two-phase calibrators that are quasi-colinear on the sky with J1810, enabling substantial improvement of the resultant astrometric precision. Combining our new observations with two archival observations from 2006, we have refined the proper motion and reference position of the magnetar and have measured its annual geometric parallax, the first such measurement for a magnetar. The parallax of 0.40 ± 0.05 mas corresponds to a most probable distance $2.5^{\, +0.4}_{\, -0.3}$ kpc for J1810. Our new astrometric results confirm an unremarkable transverse peculiar velocity of ≈200 $\rm km~s^{-1}$ for J1810, which is only at the average level among the pulsar population. The magnetar proper motion vector points back to the central region of a supernova remnant (SNR) at a compatible distance at ≈70 kyr ago, but a direct association is disfavoured by the estimated SNR age of ∼3 kyr. 
    more » « less
  5. Abstract Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. 
    more » « less
  6. Abstract We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the l = 2, m = 1, 2 modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found, so we present 95% credible upper limits on the strain amplitudes h 0 for the single-harmonic search along with limits on the pulsars’ mass quadrupole moments Q 22 and ellipticities ε . Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437−4715 and J0711−6830, which have spin-down ratios of 0.87 and 0.57, respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars, our limits are factors of ∼100 and ∼20 more constraining than their spin-down limits, respectively. For the dual-harmonic searches, new limits are placed on the strain amplitudes C 21 and C 22 . For 23 pulsars, we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory. 
    more » « less
  7. null (Ed.)
  8. Abstract We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of $$10^{5}, 10^{6}, 10^{7}\mathrm {\ Mpc}^3$$ 10 5 , 10 6 , 10 7 Mpc 3 for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of $$1^{+12}_{-1}$$ 1 - 1 + 12 ( $$10^{+52}_{-10}$$ 10 - 10 + 52 ) for binary neutron star mergers, of $$0^{+19}_{-0}$$ 0 - 0 + 19 ( $$1^{+91}_{-1}$$ 1 - 1 + 91 ) for neutron star–black hole mergers, and $$17^{+22}_{-11}$$ 17 - 11 + 22 ( $$79^{+89}_{-44}$$ 79 - 44 + 89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers. 
    more » « less