3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high‐performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi‐block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur‐based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13–24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.
-
Abstract The production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the creation of high‐performance sulfur based plastics with improved thermomechanical properties, elasticity and flame retardancy. We report on a synthetic polymerization methodology to prepare the first example of sulfur based segmented multi‐block polyurethanes (SPUs) and thermoplastic elastomers that incorporate an appreciable amount of sulfur into the final target material. This approach applied both the inverse vulcanization of S8with olefinic alcohols and dynamic covalent polymerizations with dienes to prepare sulfur polyols and terpolyols that were used in polymerizations with aromatic diisocyanates and short chain diols. Using these methods, a new class of high molecular weight, soluble block copolymer polyurethanes were prepared as confirmed by Size Exclusion Chromatography, NMR spectroscopy, thermal analysis, and microscopic imaging. These sulfur‐based polyurethanes were readily solution processed into large area free standing films where both the tensile strength and elasticity of these materials were controlled by variation of the sulfur polyol composition. SPUs with both high tensile strength (13–24 MPa) and ductility (348 % strain at break) were prepared, along with SPU thermoplastic elastomers (578 % strain at break) which are comparable values to classical thermoplastic polyurethanes (TPUs). The incorporation of sulfur into these polyurethanes enhanced flame retardancy in comparison to classical TPUs, which points to the opportunity to impart new properties to polymeric materials as a consequence of using elemental sulfur.