- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, T (1)
-
Diaz, D J (1)
-
Gong, C (1)
-
Klivans, A (1)
-
Liu, Q (1)
-
Loy, J M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AI-based frameworks for protein engineering use self-supervised learning (SSL) to obtain representations for downstream biological predictions. The most common training objective for these methods is wildtype accuracy: given a sequence or structure where a wildtype residue has been masked, predict the missing amino acid. Wildtype accuracy, however, does not align with the primary goal of protein engineering, which is to suggest a {\em mutation} rather than to identify what already appears in nature. Here we present Evolutionary Ranking (EvoRank), a training objective that incorporates evolutionary information derived from multiple sequence alignments (MSAs) to learn more diverse protein representations. EvoRank corresponds to ranking amino-acid likelihoods in the probability distribution induced by an MSA. This objective forces models to learn the underlying evolutionary dynamics of a protein. Across a variety of phenotypes and datasets, we demonstrate that EvoRank leads to dramatic improvements in zero-shot performance and can compete with models fine-tuned on experimental data. This is particularly important in protein engineering, where it is expensive to obtain data for fine-tuning.more » « less
An official website of the United States government

Full Text Available