- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lopes, Pedro (2)
-
Lu, Jasmine (2)
-
Brooks, Jas (1)
-
Hoffman, Guy (1)
-
Hu, Yuhan (1)
-
Liu, Ziwei (1)
-
Pineros, Miguel Alfonso (1)
-
Scinto-Madonich, Nathan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Designing plant-driven actuators presents an opportunity to create new types of devices that grow, age, and decay, such as robots that embody these qualities in their physical structure. Plant-robot hybrids that grow and decay incorporate unpredictable and gradual transformations inherent across living organisms and suggest an alternative to the design principles of immediacy, responsiveness, control, accuracy, and durability commonly found in robotic design. To explore this, we present a design space of primitives for plant-driven robotic actuators. Proof-of-concept prototypes illustrate how concepts like slow change, slow movement, decay, and destruction can be incorporated into robotic forms. We describe the design considerations required for building plant-driven actuators for robots, including experimental findings regarding the mechanical properties of plant forces. Finally, we speculate on the potential benefits of plant-robot hybrids to interactive domains such as robotics.more » « less
-
Lu, Jasmine; Liu, Ziwei; Brooks, Jas; Lopes, Pedro (, ACM Symposium on User Interface Software and Technology)We propose a new class of haptic devices that provide haptic sensations by delivering liquid-stimulants to the user's skin; we call this chemical haptics. Upon absorbing these stimulants, which contain safe and small doses of key active ingredients, receptors in the user's skin are chemically triggered, rendering distinct haptic sensations. We identified five chemicals that can render lasting haptic sensations: tingling (sanshool), numbing (lidocaine), stinging (cinnamaldehyde), warming (capsaicin), and cooling (menthol). To enable the application of our novel approach in a variety of settings (such as VR), we engineered a self-contained wearable that can be worn anywhere on the user's skin (e.g., face, arms, legs). Implemented as a soft silicone patch, our device uses micropumps to push the liquid stimulants through channels that are open to the user's skin, enabling topical stimulants to be absorbed by the skin as they pass through. Our approach presents two unique benefits. First, it enables sensations, such as numbing, not possible with existing haptic devices. Second, our approach offers a new pathway, via the skin's chemical receptors, for achieving multiple haptic sensations using a single actuator, which would otherwise require combining multiple actuators (e.g., Peltier, vibration motors, electro-tactile stimulation). We evaluated our approach by means of two studies. In our first study, we characterized the temporal profiles of sensations elicited by each chemical. Using these insights, we designed five interactive VR experiences utilizing chemical haptics, and in our second user study, participants rated these VR experiences with chemical haptics as more immersive than without. Finally, as the first work exploring the use of chemical haptics on the skin, we offer recommendations to designers for how they may employ our approach for their interactive experiences.more » « less
An official website of the United States government
