We present the kinematic analysis of 246 stars within
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract from the center of Orion Nebula Cluster (ONC), the closest massive star cluster with active star formation across the full mass range, which provides valuable insights in the formation and evolution of star cluster on an individual-star basis. High-precision radial velocities and surface temperatures are retrieved from spectra acquired by the NIRSPEC instrument used with adaptive optics (NIRSPAO) on the Keck II 10 m telescope. A 3D kinematic map is then constructed by combining with the proper motions previously measured by the Hubble Space Telescope Advanced Camera for Surveys/WFPC2/WFC3IR and Keck II NIRC2. The measured root-mean-squared velocity dispersion is 2.26 ± 0.08 km s−1, significantly higher than the virial equilibrium’s requirement of 1.73 km s−1, suggesting that the ONC core is supervirial, consistent with previous findings. Energy equipartition is not detected in the cluster. Most notably, the velocity of each star relative to its neighbors is found to be negatively correlated with stellar mass. Low-mass stars moving faster than their surrounding stars in a supervirial cluster suggests that the initial masses of forming stars may be related to their initial kinematic states. Additionally, a clockwise rotation preference is detected. A weak sign of inverse mass segregation is also identified among stars excluding the Trapezium stars, although it could be a sample bias. Finally, this study reports the discovery of four new candidate spectroscopic binary systems. -
ABSTRACT The identification and characterization of massive (≳ 0.8 M⊙) white dwarfs is challenging in part due to their low luminosity. Here, we present two candidate single-lined spectroscopic binaries, Gaia DR3 4014708864481651840 and 5811237403155163520, with K-dwarf primaries and optically dark companions. Both have orbital periods of P ∼ 0.45 d and show rotational variability, ellipsoidal modulations, and high-amplitude radial velocity variations. Using light curves from the Transiting Exoplanet Survey Satellite (TESS), radial velocities from ground-based spectrographs, and spectral energy distributions, we characterize these binaries to describe the nature of the unseen companion. We find that both systems are consistent with a massive white dwarf companion. Unlike simple ellipsoidal variables, star-spots cause the light-curve morphology to change between TESS sectors. We attempt to constrain the orbital inclination using phoebe binary light-curve models, but degeneracies in the light curves of spotted stars prevent a precise determination. Finally, we search for similar objects using Gaia DR3 and TESS, and comment on these systems in the context of recently claimed compact object binaries.
Free, publicly-accessible full text available February 27, 2025 -
Abstract We present the first estimate of the intrinsic binary fraction of young stars across the central ≈0.4 pc surrounding the supermassive black hole (SMBH) at the Milky Way Galactic center (GC). This experiment searched for photometric variability in 102 spectroscopically confirmed young stars, using 119 nights of 10″ wide adaptive optics imaging observations taken at W. M. Keck Observatory over 16 yr in the
-[2.1μ m] andH -[1.6μ m] bands. We photometrically detected three binary stars, all of which are situated more than 1″ (0.04 pc) from the SMBH and one of which, S2-36, is newly reported here with spectroscopic confirmation. All are contact binaries or have photometric variability originating from stellar irradiation. To convert the observed binary fraction into an estimate of the underlying binary fraction, we determined the experimental sensitivity through detailed light-curve simulations, incorporating photometric effects of eclipses, irradiation, and tidal distortion in binaries. The simulations assumed a population of young binaries, with stellar ages (4 Myr) and masses matched to the most probable values measured for the GC young star population, and underlying binary system parameters (periods, mass ratios, and eccentricities) similar to those of local massive stars. As might be expected, our experimental sensitivity decreases for eclipses narrower in phase. The detections and simulations imply that the young, massive stars in the GC have a stellar binary fraction ≥71% (68% confidence), or ≥42% (95% confidence). This inferred GC young star binary fraction is consistent with that typically seen in young stellar populations in the solar neighborhood. Furthermore, our measured binary fraction is significantly higher than that recently reported by Chu et al. based on radial velocity measurements for stars ≲1″ of the SMBH. Constrained with these two studies, the probability that the same underlying young star binary fraction extends across the entire region is <1.4%. This tension provides support for a radial dependence of the binary star fraction, and therefore, for the dynamical predictions of binary merger and evaporation events close to the SMBH. -
Abstract From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens class of any single event. We investigate this method’s effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of 30
M ⊙. On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to ≈25%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys. -
Abstract The astrometric precision and accuracy of an imaging camera is often limited by geometric optical distortions. These must be calibrated and removed to measure precise proper motions, orbits, and gravitationally lensed positions of interesting astronomical objects. Here, we derive a distortion solution for the OSIRIS Imager fed by the Keck I adaptive optics system at the W. M. Keck Observatory. The distortion solution was derived from images of the dense globular clusters M15 and M92 taken with OSIRIS in 2020 and 2021. The set of 403 starlists, each containing ∼1000 stars, were compared to reference Hubble catalogs to measure the distortion-induced positional differences. OSIRIS was opened and optically realigned in 2020 November and the distortion solutions before and after the opening show slight differences at the ∼20 mas level. We find that the OSIRIS distortion closely matches the designed optical model: large, reaching 20 pixels at the corners, but mostly low order, with the majority of the distortion in the 2nd-order mode. After applying the new distortion correction, we find a median residual of [
x, y ] = [0.052, 0.056] pixels ([0.51, 0.56] mas) for the 2020 solution, and [x, y ] = [0.081, 0.071] pixels ([0.80, 0.71] mas) for the 2021 solution. Comparison between NIRC2 images and OSIRIS images of the Galactic center show that the mean astrometric difference between the two instruments reduces from 10.7 standard deviations to 1.7 standard deviations when the OSIRIS distortion solution is applied. The distortion model is included in the Keck AO Imaging data-reduction pipeline and is available for use on OSIRIS data. -
Abstract Microlensing events have historically been discovered throughout the Galactic bulge and plane by surveys designed solely for that purpose. We conduct the first multiyear search for microlensing events on the Zwicky Transient Facility (ZTF), an all-sky optical synoptic survey that observes the entire visible northern sky every few nights. We discover 60 high-quality microlensing events in the 3 yr of ZTF-I using the bulk lightcurves in the ZTF Public Data Release 5.19 of our events are found outside of the Galactic plane (∣
b ∣ ≥ 10°), nearly doubling the number of previously discovered events in the stellar halo from surveys pointed toward the Magellanic Clouds and the Andromeda galaxy. We also record 1558 ongoing candidate events as potential microlensing that can continue to be observed by ZTF-II for identification. The scalable and computationally efficient methods developed in this work can be applied to future synoptic surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope, as they attempt to find microlensing events in even larger and deeper data sets. -
Geometric optical distortion is a significant contributor to the astrometric error budget in large telescopes using adaptive optics. To increase astrometric precision, optical distortion calibration is necessary. We investigate using smartphone Organic Light-Emitting Diode (OLED) screens as astrometric calibrators. Smartphones are low-cost, have stable illumination, and can be quickly reconfigured to probe different spatial frequencies of an optical system’s geometric distortion. In this work, we characterize the astrometric accuracy of a Samsung S20 smartphone, with a view towards providing large format, flexible astrometric calibrators for the next generation of astronomical instruments. We find the placement error of the pixels to be 189[Formula: see text]nm ± 15[Formula: see text]nm Root Mean Square (RMS). At this level of error, milliarcsecond astrometric accuracy can be obtained on modern astronomical instruments.more » « less
-
Abstract Sgr A* is the variable electromagnetic source associated with accretion onto the Galactic center supermassive black hole. While the near-infrared (NIR) variability of Sgr A* was shown to be consistent over two decades, unprecedented activity in 2019 challenges existing statistical models. We investigate the origin of this activity by recalibrating and reanalyzing all of our Keck Observatory Sgr A* imaging observations from 2005–2022. We present light curves from 69 observation epochs using the NIRC2 imager at 2.12
μ m with laser-guide star adaptive optics. These observations reveal that the mean luminosity of Sgr A* increased by a factor of ∼3 in 2019, and the 2019 light curves had higher variance than in all time periods we examined. We find that the 2020–2022 flux distribution is statistically consistent with the historical sample and model predictions, but with fewer bright measurements above 0.6 mJy at the ∼2σ level. Since 2019, we have observed a maximumK s (2.2μ m) flux of 0.9 mJy, compared to the highest pre-2019 flux of 2.0 mJy and highest 2019 flux of 5.6 mJy. Our results suggest that the 2019 activity was caused by a temporary accretion increase onto Sgr A*, possibly due to delayed accretion of tidally stripped gas from the gaseous object G2 in 2014. We also examine faint Sgr A* fluxes over a long time baseline to search for a quasi-steady quiescent state. We find that Sgr A* displays flux variations over a factor of ∼500, with no evidence for a quiescent state in the NIR. -
Abstract We measured the precise masses of the host and planet in the OGLE-2003-BLG-235 system, when the lens and source were resolving, with 2018 Keck high resolution images. This measurement is in agreement with the observation taken in 2005 with the Hubble Space Telescope (HST). In the 2005 data, the lens and sources were not resolved and the measurement was made using color-dependent centroid shift only. The Nancy Grace Roman Space Telescope will measure masses using data typically taken within 3–4 yr of the peak of the event, which is a much shorter baseline when compared to most of the mass measurements to date. Hence, the color-dependent centroid shift will be one of the primary methods of mass measurements for the Roman telescope. Yet, mass measurements of only two events (OGLE-2003-BLG-235 and OGLE-2005-BLG-071) have been done using the color-dependent centroid shift method so far. The accuracy of the measurements using this method are neither completely known nor well studied. The agreement of the Keck and HST results, as shown in this paper, is very important because this agreement confirms the accuracy of the mass measurements determined at a small lens-source separation using the color-dependent centroid shift method. It also shows that with >100 high resolution images, the Roman telescope will be able to use color-dependent centroid shift at a 3–4 yr time baseline and produce mass measurements. We find that OGLE-2003-BLG-235 is a planetary system that consists of a 2.34 ± 0.43 M Jup planet orbiting a 0.56 ± 0.06 M ⊙ K-dwarf host star at a distance of 5.26 ± 0.71 kpc from the Sun.more » « less