skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Mengmeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Forest trees provide critical ecosystem services for humanity that are under threat due to ongoing global change. Measuring and characterizing genetic diversity are key to understanding adaptive potential and developing strategies to mitigate negative consequences arising from climate change. In the area of forest genetic diversity, genetic divergence caused by large-scale changes at the chromosomal level has been largely understudied. In this study, we used the RNA-seq data of 20 co-occurring forest trees species from genera including Acer, Alnus, Amelanchier, Betula, Cornus, Corylus, Dirca, Fraxinus, Ostrya, Populus, Prunus, Quercus, Ribes, Tilia, and Ulmus sampled from Upper Peninsula of Michigan. These data were used to infer the origin and maintenance of gene family variation, species divergence time, as well as gene family expansion and contraction. We identified a signal of common whole genome duplication events shared by core eudicots. We also found rapid evolution, namely fast expansion or fast contraction of gene families, in plant–pathogen interaction genes amongst the studied diploid species. Finally, the results lay the foundation for further research on the genetic diversity and adaptive capacity of forest trees, which will inform forest management and conservation policies. 
    more » « less
  2. Abstract Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine andArabidopsis(~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. 
    more » « less