DNA nanotechnology provides an approach to create precise, tunable, and biocompatible nanostructures for biomedical applications. However, the stability of these structures is severely compromised in biological milieu due to their fast degradation by nucleases. Recently, we showed how enzymatic polymerization could be harnessed to grow polynucleotide brushes of tunable length and location on the surface of DNA origami nanostructures, which greatly enhances their nuclease stability. Here, we report on strategies that allow for both spatial and temporal control over polymerization through activatable initiation, cleavage, and regeneration of polynucleotide brushes using restriction enzymes. The ability to site‐specifically decorate DNA origami nanostructures with polynucleotide brushes in a spatiotemporally controlled way provides access to “smart” functionalized DNA architectures with potential applications in drug delivery and supramolecular assembly.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract DNA nanotechnology provides an approach to create precise, tunable, and biocompatible nanostructures for biomedical applications. However, the stability of these structures is severely compromised in biological milieu due to their fast degradation by nucleases. Recently, we showed how enzymatic polymerization could be harnessed to grow polynucleotide brushes of tunable length and location on the surface of DNA origami nanostructures, which greatly enhances their nuclease stability. Here, we report on strategies that allow for both spatial and temporal control over polymerization through activatable initiation, cleavage, and regeneration of polynucleotide brushes using restriction enzymes. The ability to site‐specifically decorate DNA origami nanostructures with polynucleotide brushes in a spatiotemporally controlled way provides access to “smart” functionalized DNA architectures with potential applications in drug delivery and supramolecular assembly.
-
Abstract Exploring the structural and electrical properties of DNA origami nanowires is an important endeavor for the advancement of DNA nanotechnology and DNA nanoelectronics. Highly conductive DNA origami nanowires are a desirable target for creating low‐cost self‐assembled nanoelectronic devices and circuits. In this work, the structure‐dependent electrical conductance of DNA origami nanowires is investigated. A silicon nitride (Si3N4) on silicon semiconductor chip with gold electrodes was used for collecting electrical conductance measurements of DNA origami nanowires, which are found to be an order of magnitude less electrically resistive on Si3N4substrates treated with a monolayer of hexamethyldisilazane (HMDS) (∼1013ohms) than on native Si3N4substrates without HMDS (∼1014ohms). Atomic force microscopy (AFM) measurements of the height of DNA origami nanowires on mica and Si3N4substrates reveal that DNA origami nanowires are ∼1.6 nm taller on HMDS‐treated substrates than on the untreated ones indicating that the DNA origami nanowires undergo increased structural deformation when deposited onto untreated substrates, causing a decrease in electrical conductivity. This study highlights the importance of understanding and controlling the interface conditions that affect the structure of DNA and thereby affect the electrical conductance of DNA origami nanowires.
-
Abstract Combining surface‐initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI‐TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush‐functionalized DNA nanostructures. We demonstrate that SI‐TcEP can site‐specifically pattern DONs with brushes containing both natural and non‐natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse‐grained simulations predict the conformation of the brush‐functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush‐functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site‐specific growth of polynucleotide brushes. The ability to site‐specifically decorate DONs with brushes of natural and non‐natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.
-
Abstract Combining surface‐initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI‐TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush‐functionalized DNA nanostructures. We demonstrate that SI‐TcEP can site‐specifically pattern DONs with brushes containing both natural and non‐natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse‐grained simulations predict the conformation of the brush‐functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush‐functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site‐specific growth of polynucleotide brushes. The ability to site‐specifically decorate DONs with brushes of natural and non‐natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.