Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The year 2024 marks the 30-year anniversary of the quantum cascade laser (QCL), which is becoming the leading laser source in the mid-infrared (mid-IR) range. Since the first demonstration, QCL has undergone tremendous development in terms of the output power, wall plug efficiency, spectral coverage, wavelength tunability, and beam quality. Owing to its unique intersubband transition and fast gain features, QCL possesses strong nonlinearities that makes it an ideal platform for nonlinear photonics like terahertz (THz) difference frequency generation and direct frequency comb generation via four-wave mixing when group velocity dispersion is engineered. The feature of broadband, high-power, and low-phase noise of QCL combs is revolutionizing mid-IR spectroscopy and sensing by offering a new tool measuring multi-channel molecules simultaneously in the μs time scale. While THz QCL difference frequency generation is becoming the only semiconductor light source covering 1–5 THz at room temperature. In this paper, we will introduce the latest research from the Center for Quantum Devices at Northwestern University and briefly discuss the history of QCL, recent progress, and future perspective of QCL research, especially for QCL frequency combs, room temperature THz QCL difference frequency generation, and major challenges facing QCL in the future.more » « less
-
Abstract A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy.more » « less
-
We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications.more » « less
An official website of the United States government
