skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Shao-Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dynamics of the nuclei of both a chromophore and its condensed-phase environment control many spectral features, including the vibronic and inhomogeneous broadening present in spectral line shapes. For the cresyl violet chromophore in methanol, we here analyze and isolate the effect of specific chromophore–solvent interactions on simulated spectral densities, reorganization energies, and linear absorption spectra. Employing both chromophore and its condensed-phase environment control many spectral features, including the vibronic and inhomogeneous broadening present in spectral line shapes. For the cresyl violet chromophore in methanol, we here analyze and isolate the effect of specific chromophore–solvent interactions on simulated spectral densities, reorganization energies, and linear absorption spectra. Employing both force field and ab initio molecular dynamics trajectories along with the inclusion of only certain solvent molecules in the excited-state calculations, we determine that the methanol molecules axial to the chromophore are responsible for the majority of inhomogeneous broadening, with a single methanol molecule that forms an axial hydrogen bond dominating the response. The strong peripheral hydrogen bonds do not contribute to spectral broadening, as they are very stable throughout the dynamics and do not lead to increased energy-gap fluctuations. We also find that treating the strong peripheral hydrogen bonds as molecular mechanical point charges during the molecular dynamics simulation underestimates the vibronic coupling. Including these peripheral hydrogen bonding methanol molecules in the quantum-mechanical region in a geometry optimization increases the vibronic coupling, suggesting that a more advanced treatment of these strongly interacting solvent molecules during the molecular dynamics trajectory may be necessary to capture the full vibronic spectral broadening. 
    more » « less
  2. null (Ed.)
    Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems. 
    more » « less