skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lu, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An increasing magnetic field perpendicular to an undoped semiconductor surface at low temperature is known to strengthen the binding of localized electrons to stationary ions, as the wavefunction's tails evolve from exponential to Gaussian. It is also known that application of a high bias voltage to a depleted semiconductor can liberate bound charge and induce a large drop in electrical resistance. We connect these established results to experimental electrical transport measurements on off-state germanium Schottky-barrier metal–oxide–semiconductor field-effect transistor (MOSFETs) with an aluminum oxide insulating dielectric and platinum germanide contacts. We make measurements at the three distinct orientations of the magnetic field with respect to the substrate and the current. At 6 K, we observe sharp attenuation of current by more than 2 orders of magnitude, within 60 mT, at a crossover magnetic field perpendicular to the substrate. A 1 T magnetic field attenuates the current by more than 4 orders of magnitude. The strength of the attenuation and the value of the crossover field are controlled by both the gate–source and drain–source voltages. The attenuation is much weaker when the magnetic field is parallel to the current. Finally, we orient the magnetic field parallel to the substrate, but perpendicular to the current, allowing us to distinguish charge hopping at the oxide interface from charge hopping in the bulk. This large off-state magnetoresistance can be exploited for cryogenic magnetic- and photo-detection, and for high-bias, low-leakage MOSFETs. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Sketching is an excellent brainstorming approach that improves students’ 21st century skills including critical-thinking, communication, and, when working in teams, collaboration. The purpose of the article is to translate the teaching of design sketching, learned through collaborative design & innovation programming at the higher education level, to the K-12 engineering and technology classroom. 
    more » « less
  3. Translation of Design Sketching Practices, Learned Via an Innovation-focused Undergraduate Program, to K-12 Schools. 
    more » « less
  4. Nature (Ed.)
  5. Free, publicly-accessible full text available August 29, 2025
  6. Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Néel temperature ( T N ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes α md to the thermopower, which scales as ~ T 3 . Magnon drag persists into the paramagnetic state up to >3 × T N because of long-lived, short-range antiferromagnet-like fluctuations (paramagnons) shown by neutron spectroscopy to exist in the paramagnetic state. The paramagnon lifetime is longer than the charge carrier–magnon interaction time; its spin-spin spatial correlation length is larger than the free-carrier effective Bohr radius and de Broglie wavelength. Thus, to itinerant carriers, paramagnons look like magnons and give a paramagnon-drag thermopower. This contribution results in an optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectric energy conversion efficiency from a spin-caloritronic effect. 
    more » « less
  7. Scientific simulations generate large amounts of floating-point data, which are often not very compressible using the traditional reduction schemes, such as deduplication or lossless compression. The emergence of lossy floating-point compression holds promise to satisfy the data reduction demand from HPC applications; however, lossy compression has not been widely adopted in science production. We believe a fundamental reason is that there is a lack of understanding of the benefits, pitfalls, and performance of lossy compression on scientific data. In this paper, we conduct a comprehensive study on state-of- the-art lossy compression, including ZFP, SZ, and ISABELA, using real and representative HPC datasets. Our evaluation reveals the complex interplay between compressor design, data features and compression performance. The impact of reduced accuracy on data analytics is also examined through a case study of fusion blob detection, offering domain scientists with the insights of what to expect from fidelity loss. Furthermore, the trial and error approach to understanding compression performance involves substantial compute and storage overhead. To this end, we propose a sampling based estimation method that extrapolates the reduction ratio from data samples, to guide domain scientists to make more informed data reduction decisions. 
    more » « less
  8. Free, publicly-accessible full text available August 1, 2025
  9. Free, publicly-accessible full text available July 1, 2025