Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Paleoceanography. The data include parameters of paleoceanography with a geographic location of Arabian Sea. The time period coverage is from 29600 to 0 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.more » « less
-
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Paleoceanography. The data include parameters of paleocean (oxygen isotopes) with a geographic location of North Atlantic Ocean. The time period coverage is from 22423 to 563 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.more » « less
-
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Paleoceanography. The data include parameters of paleocean (oxygen isotopes) with a geographic location of North Atlantic Ocean. The time period coverage is from 2179 to -63 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.more » « less
-
Fast radio bursts (FRBs) are millisecond-duration pulses of radio emission originating from extragalactic distances. Radio dispersion is imparted on each burst by intervening plasma, mostly located in the intergalactic medium. In this work, we observe the burst FRB 20220610A and localize it to a morphologically complex host galaxy system at redshift 1.016 ± 0.002. The burst redshift and dispersion measure are consistent with passage through a substantial column of plasma in the intergalactic medium and extend the relationship between those quantities measured at lower redshift. The burst shows evidence for passage through additional turbulent magnetized plasma, potentially associated with the host galaxy. We use the burst energy of 2 × 1042erg to revise the empirical maximum energy of an FRB.
-
Site U1559 (30°15.6336′S, 15°02.0941′W; proposed Site SATL-13A) is in the central South Atlantic Ocean at a water depth of 3055 meters below sea level (mbsl), ~130 km west of the Mid-Atlantic Ridge (see Figure F1 and Tables T1, T2, all in the Expedition 390/393 summary chapter [Coggon et al., 2024d]) on crust that formed at a slow half-spreading rate of ~17.0 mm/y (Kardell et al., 2019; Christeson et al., 2020) (see Figure F7 in the Expedition 390/393 summary chapter [Coggon et al., 2024d]). With an estimated age of 6.6 Ma, Site U1559 is the youngest location of the South Atlantic Transect (SAT) campaign (International Ocean Discovery Program [IODP] Expeditions 390C, 395E, 390, and 393).more » « lessFree, publicly-accessible full text available January 23, 2025
-
Site U1558 (30°53.7814′S, 24°50.4822′W; proposed Site SATL-43A) is in the central South Atlantic Ocean at a water depth of ~4334 meters below sea level (mbsl) ~1067 km west of the Mid-Atlantic Ridge (see Figure F1 and Tables T1, T2, all in the Expedition 390/393 summary chapter [Coggon et al., 2024c]) on crust that formed at a slow half spreading rate of ~19.5 mm/y (Kardell et al., 2019; Christeson et al., 2020) (see Figure F7 in the Expedition 390/393 summary chapter [Coggon et al., 2024c]). With an estimated age of 49.2 Ma, Site U1558 is the second oldest location of the South Atlantic Transect (SAT) campaign (International Ocean Discovery Program [IODP] Expeditions 390C, 395E, 390, and 393).more » « lessFree, publicly-accessible full text available January 23, 2025
-
The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the ocean crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E (October–December 2020 and April–June 2021, respectively) that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow- to intermediate-spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regard to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems' responses to variable conditions in a low-energy gyre and aging ocean crust. The transect, located near World Ocean Circulation Experiment Line A10, provides records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E (5 October–5 December 2020 and 6 April–6 June 2021, respectively), a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer and extended core barrel systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77% recovery) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on ~61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. During Expedition 390, more than 1.2 km of sediments was characterized, including 793 m of core collected during Expeditions 390C and 395E at Sites U1556, U1557, and U1559 as well as Expedition 395E Site U1561, which was cored on thinly (<50 m) sedimented ~61 Ma crust. The uppermost ~342 and ~120 m of ~61 Ma ocean crust was cored at Sites U1556 and U1557, respectively. Geophysical wireline logging was achieved at both sites, but the basement hole at Site U1556 was not preserved as a legacy hole because of subsidence of the reentry cone below the seafloor. At Site U1557, the drill bit was deposited on the seafloor prior to downhole logging, leaving Hole U1557D available for future deepening and establishing a legacy borehole for basement hydrothermal and microbiological experiments. Expedition 393 (7 June–7 August 2022) operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement); however, at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were achieved at Sites U1583 and U1560 only. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively. Highlights of the SAT expeditions include (1) recovering abundant altered glass, hydrothermal veins, complex breccias, and a wide range of alteration halos in the volcanic sequences of the uppermost ocean crust formed at 7–61 Ma, indicating low-temperature hydrothermal processes and exchanges between seawater and basalts across the western flank of the southern Mid-Atlantic Ridge for millions to tens of millions of years; (2) documenting extended redox gradients from both the seafloor and the sediment/basement interface that indicate significant subsurface fluid flow and may support a diversity of microorganisms and metabolisms; and (3) recovering an almost complete stratigraphic record of the Cenozoic (including the Paleocene/Eocene Thermal Maximum and other key climate events) composed of nannofossil oozes with varying amounts of clay indicating the shoaling and deepening of the calcite compensation depth.more » « lessFree, publicly-accessible full text available January 23, 2025
-
Site U1583 (30°42.6175′S, 20°26.0336′W; proposed Site SATL-33B) is in the central South Atlantic Ocean at a water depth of ~4210 meters below sea level (mbsl), ~652 km west of the Mid-Atlantic Ridge (see Figure F1 and Tables T1, T2, all in the Expedition 390/393 summary chapter [Coggon et al., 2024b]) on crust that formed at an intermediate half spreading rate of ~24 mm/y, which is close to the highest spreading rate in the study region (Kardell et al., 2019; Christeson et al., 2020) (see Figure F7 in the Expedition 390/393 summary chapter [Coggon et al., 2024b]). With an estimated age of 30.6 Ma, Site U1583 is close to the median age of the South Atlantic Transect (SAT) campaign (International Ocean Discovery Program [IODP] Expeditions 390C, 395E, 390, and 393), and it is closest to the geographic midpoint.more » « lessFree, publicly-accessible full text available January 23, 2025