skip to main content


Search for: All records

Creators/Authors contains: "Lu, Wei D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Analog compute‐in‐memory (CIM) systems are promising candidates for deep neural network (DNN) inference acceleration. However, as the use of DNNs expands, protecting user input privacy has become increasingly important. Herein, a potential security vulnerability is identified wherein an adversary can reconstruct the user's private input data from a power side‐channel attack even without knowledge of the stored DNN model. An attack approach using a generative adversarial network is developed to achieve high‐quality data reconstruction from power leakage measurements. The analyses show that the attack methodology is effective in reconstructing user input data from power leakage of the analog CIM accelerator, even at large noise levels and after countermeasures. To demonstrate the efficacy of the proposed approach, an example of CIM inference of U‐Net for brain tumor detection is attacked, and the original magnetic resonance imaging medical images can be successfully reconstructed even at a noise level of 20% standard deviation of the maximum power signal value. This study highlights a potential security vulnerability in emerging analog CIM accelerators and raises awareness of needed safety features to protect user privacy in such systems.

     
    more » « less
  2. Abstract Reservoir computing (RC) offers efficient temporal data processing with a low training cost by separating recurrent neural networks into a fixed network with recurrent connections and a trainable linear network. The quality of the fixed network, called reservoir, is the most important factor that determines the performance of the RC system. In this paper, we investigate the influence of the hierarchical reservoir structure on the properties of the reservoir and the performance of the RC system. Analogous to deep neural networks, stacking sub-reservoirs in series is an efficient way to enhance the nonlinearity of data transformation to high-dimensional space and expand the diversity of temporal information captured by the reservoir. These deep reservoir systems offer better performance when compared to simply increasing the size of the reservoir or the number of sub-reservoirs. Low frequency components are mainly captured by the sub-reservoirs in later stage of the deep reservoir structure, similar to observations that more abstract information can be extracted by layers in the late stage of deep neural networks. When the total size of the reservoir is fixed, tradeoff between the number of sub-reservoirs and the size of each sub-reservoir needs to be carefully considered, due to the degraded ability of individual sub-reservoirs at small sizes. Improved performance of the deep reservoir structure alleviates the difficulty of implementing the RC system on hardware systems. 
    more » « less
  3. null (Ed.)