Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The breakdown of a Mott-insulator when subjected to intense laser fields is characterized by the formation of doublon-hole pairs. This breakdown is furthermore evidenced by the production of high harmonics that can be experimentally measured. Here, we present an approach for extracting the doublon-hole correlation length of a Mott insulator. The method is based on a dynamical calculation of the Mott insulator’s rate of charge production in response to an applied strong-field laser pulse. We find that coupling the Mott insulator to a metal drastically increases the correlation length, in support of our recent hypothesis [
] that coupling to a metal enhances the charge fluctuations in the insulator. We confirm our conclusions using density matrix renormalization group (DMRG) calculations. The proposed method can be applied to experimentally measured observables, such as differential reflectivity or the high harmonic generation (HHG) spectrum to extract doublon-hole correlation length.108 ,144434 (2023 )2469-9950 10.1103/PhysRevB.108.144434 -
We study the phase diagram of the Yao-Lee model with Kitaev-type spin-orbital interactions in the presence of Dzyaloshinskii-Moriya interactions and external magnetic fields. Unlike the Kitaev model, the Yao-Lee model can still be solved exactly under these perturbations due to the enlarged local Hilbert space. Through a variational analysis, we obtain a rich ground-state phase diagram that consists of a variety of vison crystals with periodic arrangements of background Z2 flux (i.e., visons). With an out-of-plane magnetic field, these phases have gapped bulk and chiral edge states, characterized by a Chern number ν and an associated chiral central charge c=ν/2 of edge states. We also find helical Majorana edge states that are protected by magnetic mirror symmetry. For the bilayer systems, we find that interlayer coupling can also stabilize new topological phases. Our results spotlight the tunability and the accompanying rich physics in exactly solvable spin-orbital generalizations of the Kitaev model.more » « lessFree, publicly-accessible full text available December 1, 2024
-
The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance,
d , is assumed to be determined by its group velocity,v g . Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2that demonstrate the arrival of spin information at times significantly less thand /v g . We show that this spin wave “precursor” originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.