skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Zhaocheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Significant amplitude-independent and passive non-reciprocal wave motion can be achieved in a one-dimensional (1D) discrete chain of masses and springs with bilinear elastic stiffness. Some fundamental asymmetric spatial modulations of the bilinear spring stiffness are first examined for their non-reciprocal properties. These are combined as building blocks into more complex configurations with the objective of maximizing non-reciprocal wave behavior. The non-reciprocal property is demonstrated by the significant difference between the transmitted pulse displacement amplitudes and energies for incidence from opposite directions. Extreme non-reciprocity is realized when almost-zero transmission is achieved for the propagation from one direction with a noticeable transmitted pulse for incidence from the other. These models provide the basis for a class of simple 1D non-reciprocal designs and can serve as the building blocks for more complex and higher dimensional non-reciprocal wave systems. 
    more » « less
  2. Abstract Converting mechanical energy from either the ambient environment or the human body motions to the useful electrical energy will revolutionize power solutions for flexible electronics. Here, a hybrid energy harvesting strategy is reported, which combines porous polymeric piezoelectric film with an electrostatic layer as an integration for converting the mechanical energy into electrical energy. The piezoelectric materials through engineered microstructures are developed to enhance energy generation due to the higher compressibility and larger surface contact area. The electrostatic effect from the charged layer further contributes to the generation of electrical charges. By directly coating the stretchable carbon nanotubes onto the elastomers, more intimate integration of the hybrid energy harvesters enables the designs for complex electronics. Such flexible hybrid piezoelectric‐electrostatic device exhibits superior energy harvesting performance with a voltage output of 1.95 V, which improves 30% and 100% compared to the electrostatic and piezoelectric alone device, respectively. Experiments are also performed to demonstrate the implementation of the hybrid device's energy conversion to power small electronics and recognition of different body motions. Such hybrid strategy provides a new solution toward future energy revolution for flexible electronics. 
    more » « less