skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Zhiying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The CO2 content of Earth's atmosphere is rapidly increasing due to human consumption of fossil fuels. Models based on short-term culture experiments predict that major changes will occur in marine phytoplankton communities in the future ocean, but these models rarely consider how the evolutionary potential of phytoplankton or interactions within marine microbial communities may influence these changes. Here we experimentally evolved representatives of four phytoplankton functional types (silicifiers, calcifiers, coastal cyanobacteria, and oligotrophic cyanobacteria) in co-culture with a heterotrophic bacterium, Alteromonas, under either present-day or predicted future pCO2 conditions. The data and analysis code in this dataset show that the genomes of all four phytoplankton as well as Alteromonas evolved over the course of the experiment. Mutations in oxidative stress related genes (PTOX and thioredoxin reductase) were ubiquitous in evolved cultures of Prochlorococcus, suggesting adaptation in response to the well-studied deficiencies of this genus in terms of stress resistance in culture. With the exception of Prochlorococcus, most phytoplankton genomes appeared to experience mostly purifying selection, but Alteromonas genomes showed strong evidence of directional selection, particularly in co-culture with eukaryotic phytoplankton. Metabolic pathways were under intense selection for Alteromonas, and in particular adaptation to co-culture with eukaryotes appeared to select for a shift from growth on organic acids using an abbreviated TCA cycle to growth on more complex substrates using the complete TCA cycle. This work provides new insights on how phytoplankton will respond to anthropogenic change and on the evolutionary mechanisms governing the structure and function of marine microbial communities. 
    more » « less
  2. The CO2 content of Earth's atmosphere is rapidly increasing due to human consumption of fossil fuels. Models based on short-term culture experiments predict that major changes will occur in marine phytoplankton communities in the future ocean, but these models rarely consider how the evolutionary potential of phytoplankton or interactions within marine microbial communities may influence these changes. Here we experimentally evolved representatives of four phytoplankton functional types (silicifiers, calcifiers, coastal cyanobacteria, and oligotrophic cyanobacteria) in co-culture with a heterotrophic bacterium, Alteromonas, under either present-day or predicted future pCO2 conditions. The data and analysis code in this dataset show that the growth rates of cyanobacteria generally increased under both conditions, and the growth defects observed in ancestral Prochlorococcus cultures at elevated pCO2 and in axenic culture were diminished after evolution. Evolved Alteromonas were also poorer "helpers" for Prochlorococcus, supporting the assertion that the interaction between Prochlorococcus and heterotrophic bacteria is not a true mutualism but rather a competitive interaction stabilized by Black Queen processes. This work provides new insights on how phytoplankton will respond to anthropogenic change and on the evolutionary mechanisms governing the structure and function of marine microbial communities. 
    more » « less
  3. Abstract Many microbial photoautotrophs depend on heterotrophic bacteria for accomplishing essential functions. Environmental changes, however, could alter or eliminate such interactions. We investigated the effects of changing pCO2 on gene transcription in co-cultures of 3 strains of picocyanobacteria (Synechococcus strains CC9311 and WH8102 and Prochlorococcus strain MIT9312) paired with the ‘helper’ bacterium Alteromonas macleodii EZ55. Co-culture with cyanobacteria resulted in a much higher number of up- and down-regulated genes in EZ55 than pCO2 by itself. Pathway analysis revealed significantly different transcription of genes involved in carbohydrate metabolism, stress response, and chemotaxis, with different patterns of up- or down-regulation in co-culture with different cyanobacterial strains. Gene transcription patterns of organic and inorganic nutrient transporter and catabolism genes in EZ55 suggested resources available in the culture media were altered under elevated (800 ppm) pCO2 conditions. Altogether, changing transcription patterns were consistent with the possibility that the composition of cyanobacterial excretions changed under the two pCO2 regimes, causing extensive ecophysiological changes in both members of the co-cultures. Additionally, significant downregulation of oxidative stress genes in MIT9312/EZ55 cocultures at 800 ppm pCO2 were consistent with a link between the predicted reduced availability of photorespiratory byproducts (i.e., glycolate/2PG) under this condition and observed reductions in internal oxidative stress loads for EZ55, providing a possible explanation for the previously observed lack of “help” provided by EZ55 to MIT9312 under elevated pCO2. If similar broad alterations in microbial ecophysiology occur in the ocean as atmospheric pCO2 increases, they could lead to substantially altered ecosystem functioning and community composition. 
    more » « less