Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present an analysis of 126 new radial velocity measurements from the MAROON-X spectrograph to investigate the TOI-1266 system, which hosts two known transiting sub-Neptunes at 10.8 and 18.8 days. We integrated our measurements with existing HARPS-N measurements for this system and derived revised masses for TOI-1266 b and c ofMb= 4.09 ± 0.45M⊕andMc= 2.64 ± 0.52M⊕, respectively. The Keplerian fit from the combined datasets enabled an ≈35% and ≈41% improvement in mass precision for planet b and c, respectively, compared to the previously published values. With bulk densities ofρb= 1.25 ± 0.21 g cm−3andρc= 1.51 ± 0.39 g cm−3, the planets are among the lowest density sub-Neptunes orbiting an M dwarf. They are both consistent with rocky cores surrounded by hydrogen helium envelopes. TOI-1266 c may also be consistent with a water-rich composition, but we disfavor that interpretation from an Occam's razor perspective.more » « lessFree, publicly-accessible full text available February 3, 2026
-
Abstract We present the discovery of GJ 251 c, a candidate super-Earth orbiting in the habitable zone (HZ) of its M dwarf host star. Using high-precision Habitable-zone Planet Finder and NEID RVs, in conjunction with archival RVs from the Keck I High Resolution Echelle Spectrometer, the Calar Alto High-resolution Search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrograph, and the Spectropolarimétre Infrarouge, we improve the measured parameters of the known planet, GJ 251 b (Pb= 14.2370 days; = 3.85 M⊕), and we significantly constrain the minimum mass of GJ 251 c, placing it in a plausibly terrestrial regime (Pc= 53.647 ± 0.044 days; = 3.84 ± 0.75M⊕). Using activity mitigation techniques that leverage chromatic information content, we perform a color-dependent analysis of the system and a detailed comparison of more than 50 models that describe the nature of the planets and stellar activity in the system. Due to GJ 251’s proximity to Earth (5.5 pc), next generation, 30 meter class telescopes will likely be able to image terrestrial planets in GJ 251’s HZ. In fact, GJ 251 c is currently the best candidate for terrestrial, HZ planet imaging in the northern sky.more » « lessFree, publicly-accessible full text available October 23, 2026
-
Abstract We present optical spectroscopy of 710 solar neighborhood stars collected over 20 years to catalog chromospheric activity and search for stellar activity cycles. The California Legacy Survey stars are amenable to exoplanet detection using precise radial velocities, and we present their CaiiH and K time series as a proxy for stellar and chromospheric activity. Using the High Resolution Echelle Spectrometer at Keck Observatory, we measured stellar flux in the cores of the CaiiH and K lines to determineS-values on the Mount Wilson scale and the metric, which is comparable across a wide range of spectral types. From the 710 stars, with 52,372 observations, 285 stars were sufficiently sampled to search for stellar activity cycles with periods of 2–25 yr, and 138 stars showed stellar cycles of varying length and amplitude.S-values can be used to mitigate stellar activity in the detection and characterization of exoplanets. We used them to probe stellar dynamos and to place the Sun's magnetic activity into context among solar neighborhood stars. Using precise stellar parameters and time-averaged activity measurements, we found tightly constrained cycle periods as a function of stellar temperature between of −4.7 and −4.9, a range of activity in which nearly every star has a periodic cycle. These observations present the largest sample of spectroscopically determined stellar activity cycles to date.more » « less
-
Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius , mass , and density for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of for TOI-2015 b and for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.more » « less
-
Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M⋆= 1.10 ± 0.10M☉,R⋆=1.17 ± 0.12R☉). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23R⊕and a mass measurement ofMp= 9.6 ± 3.9M⊕). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet.more » « less
-
Abstract We report the discovery of an M = 67 ± 2 M J brown dwarf transiting the early M dwarf TOI-2119 on an eccentric orbit ( e = 0.3362 ± 0.0005) at an orbital period of 7.200861 ± 0.000005 days. We confirm the brown dwarf nature of the transiting companion using a combination of ground-based and space-based photometry and high-precision velocimetry from the Habitable-zone Planet Finder. Detection of the secondary eclipse with TESS photometry enables a precise determination of the eccentricity and reveals the brown dwarf has a brightness temperature of 2100 ± 80 K, a value which is consistent with an early L dwarf. TOI-2119 is one of the most eccentric known brown dwarfs with P < 10 days, possibly due to the long circularization timescales for an object orbiting an M dwarf. We assess the prospects for determining the obliquity of the host star to probe formation scenarios and the possibility of additional companions in the system using Gaia EDR3 and our radial velocities.more » « less
-
Abstract Barnard’s star is among the most studied stars given its proximity to the Sun. It is often considered the radial velocity (RV) standard for fully convective stars due to its RV stability and equatorial decl. Recently, an M sin i = 3.3 M ⊕ super-Earth planet candidate with a 233 day orbital period was announced by Ribas et al. New observations from the near-infrared Habitable-zone Planet Finder (HPF) Doppler spectrometer do not show this planetary signal. We ran a suite of experiments on both the original data and a combined original + HPF data set. These experiments include model comparisons, periodogram analyses, and sampling sensitivity, all of which show the signal at the proposed period of 233 days is transitory in nature. The power in the signal is largely contained within 211 RVs that were taken within a 1000 day span of observing. Our preferred model of the system is one that features stellar activity without a planet. We propose that the candidate planetary signal is an alias of the 145 day rotation period. This result highlights the challenge of analyzing long-term, quasi-periodic activity signals over multiyear and multi-instrument observing campaigns.more » « less
-
Abstract TOI-561 is a galactic thick-disk star hosting an ultra-short-period (0.45-day-orbit) planet with a radius of 1.37R⊕, making it one of the most metal-poor ([Fe/H] = −0.41) and oldest (≈10 Gyr) sites where an Earth-sized planet has been found. We present new simultaneous radial velocity (RV) measurements from Gemini-N/MAROON-X and Keck/HIRES, which we combined with literature RVs to derive a mass ofMb= 2.24 ± 0.20M⊕. We also used two new sectors of TESS photometry to improve the radius determination, findingRb= 1.37 ± 0.04R⊕and confirming that TOI-561 b is one of the lowest-density super-Earths measured to date (ρb= 4.8 ± 0.5 g cm−3). This density is consistent with an iron-poor rocky composition reflective of the host star’s iron and rock-building element abundances; however, it is also consistent with a low-density planet with a volatile envelope. The equilibrium temperature of the planet (∼2300 K) suggests that this envelope would likely be composed of high mean molecular weight species, such as water vapor, carbon dioxide, or silicate vapor, and is likely not primordial. We also demonstrate that the composition determination is sensitive to the choice of stellar parameters and that further measurements are needed to determine whether TOI-561 b is a bare rocky planet, a rocky planet with an optically thin atmosphere, or a rare example of a nonprimordial envelope on a planet with a radius smaller than 1.5R⊕.more » « less
An official website of the United States government
