Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Standard learning assessments like multiple-choice questions measure what students know but not how their knowledge is organized. Recent advances in cognitive network science provide quantitative tools for modeling the structure of semantic memory, revealing key learning mechanisms. In two studies, we examined the semantic memory networks of undergraduate students enrolled in an introductory psychology course. In Study 1, we administered a cumulative multiple-choice test of psychology knowledge, the Intro Psych Test, at the end of the course. To estimate semantic memory networks, we administered two verbal fluency tasks: domain-specific fluency (naming psychology concepts) and domain-general fluency (naming animals). Based on their performance on the Intro Psych Test, we categorized students into a high-knowledge or low-knowledge group, and compared their semantic memory networks. Study 1 (N = 213) found that the high-knowledge group had semantic memory networks that were more clustered, with shorter distances between concepts—across both the domain-specific (psychology) and domain-general (animal) categories—compared to the low-knowledge group. In Study 2 (N = 145), we replicated and extended these findings in a longitudinal study, collecting data near the start and end of the semester. In addition to replicating Study 1, we found the semantic memory networks of high-knowledge students became more interconnected over time, across both domain-general and domain-specific categories. These findings suggest that successful learners show a distinct semantic memory organization—characterized by high connectivity and short path distances between concepts—highlighting the utility of cognitive network science for studying variation in student learning.more » « less
-
Crystallized intelligence (Gc)—knowledge acquired through education and experience—supports creativity. Yet whether Gc contributes to creativity beyond providing access to more knowledge, remains unclear. We explore the role of a “flexible” semantic memory network structure as a potential shared mechanism of Gc and creativity. Across two studies (N = 506 and N = 161) participants completed Gc tests of vocabulary knowledge and were divided into low, medium, and high Gc groups. They also completed two alternate uses tasks, to assess verbal creativity, and a semantic fluency task, to estimate semantic memory networks. Across both studies, the semantic memory network structure of the high Gc group was more flexible—less structured, more clustered, and more interconnected—than that of the low Gc group. The high Gc group also outperformed the low Gc group on the creativity tasks. Our results suggest that flexible access to semantic memory supports both verbal intelligence and creativity.more » « less
-
Free, publicly-accessible full text available March 13, 2026
-
Transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been shown to enhance divergent and convergent creative thinking. Yet, how stimulation impacts creative performance over time, and what cognitive mechanisms underlie any such enhancement, remain largely unanswered questions. In the present research, we aimed to (1) verify the impact of DLPFC tDCS on both convergent and divergent thinking, and further investigated (2) the temporal dynamics of divergent thinking, focusing on the serial order effect (i.e., the tendency for ideas to become more original and less frequent over time), and (3) any role that cognitive inhibition may play in mediating any effect of stimulation on creative thinking (considering the DLPFC’s involvement in driving inhibitory processes that are also relevant for creative thinking). In a within-subjects design, twenty-six participants received three types of cross-hemispheric tDCS stimulation over the DLPFC (left cathodal and right anodal, L-R+; left anodal and right cathodal, L+R-; and sham). Before stimulation, they completed a pre-flanker task measuring cognitive inhibition; during stimulation, they completed the Alternate Uses Task (AUT), Remote Associates Test (RAT), and post-flanker task. Results showed that, compared with the sham stimulation, originality of responses in the AUT was significantly enhanced in the L+R- condition, while no tDCS effect was observed for the RAT. Additionally, compared with the other stimulation conditions, we found a diminished serial order effect in the L+R- condition characterized by an accelerated production of more original ideas. Critically, the L+R- condition was accompanied by better performance on the flanker task. Our findings thus verify that L+R- tDCS over the DLPFC accelerates idea originality also providing tentative clues that inhibition may act as a cognitive mechanism underlying enhancements in divergent thinking resulting from frontal lobe neuromodulation.more » « less