skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Luckie, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using a toolbox of Internet cartography methods, and new ways of applying them, we have undertaken a comprehensive active measurement-driven study of the topology of U.S. regional access ISPs. We used state-of-the-art approaches in various combinations to accommodate the geographic scope, scale, and architectural richness of U.S. regional access ISPs. In addition to vantage points from research platforms, we used public WiFi hotspots and public transit of mobile devices to acquire the visibility needed to thoroughly map access networks across regions. We observed many different approaches to aggregation and redundancy, across links, nodes, buildings, and at different levels of the hierarchy. One result is substantial disparity in latency from some Edge COs to their backbone COs, with implications for end users of cloud services. Our methods and results can inform future analysis of critical infrastructure, including resilience to disasters, persistence of the digital divide, and challenges for the future of 5G and edge computing. 
    more » « less
  2. null (Ed.)
    We present the design, implementation, evaluation, and validation of a system that learns regular expressions (regexes) to extract Autonomous System Numbers (ASNs) from hostnames associated with router interfaces. We train our system with ASNs inferred by RouterToAsAssignment and bdrmapIT using topological constraints from traceroute paths, as well as ASNs recorded by operators in PeeringDB, to learn regexes for 206 different suffixes. Because these methods for inferring router ownership can infer the wrong ASN, we modify bdrmapIT to integrate this new capability to extract ASNs from hostnames. Evaluating against ground truth, our modification correctly distinguished stale from correct hostnames for 92.5% of hostnames with an ASN different from bdrmapIT’s initial inference. This modification allowed bdrmapIT to increase the agreement between extracted and inferred ASNs for these routers in the January 2020 ITDK from 87.4% to 97.1% and reduce the error rate from 1/7.9 to 1/34.5. This work presents a new avenue for collecting validation data, opening a broader horizon of opportunity for evidence-based router ownership inference. 
    more » « less
  3. Two complementary approaches to mapping network boundaries from traceroute paths recently emerged [27,31]. Both approaches apply heuristics to inform inferences extracted from traceroute measurement campaigns. bdrmap [27] used targeted traceroutes from a specific network, alias resolution probing techniques, and AS relationship inferences, to infer the boundaries of that specific network and the other networks attached at each boundary. MAPIT [31] tackled the ambitious challenge of inferring all AS-level network boundaries in a massive archived collection of traceroutes launched from many different networks. Both were substantial contributions to the state-of-the-art, and inspired a collaboration to explore the potential to combine the approaches. We present and evaluate bdrmapIT, the result of that exploration, which yielded a more complete, accurate, and general solution to this persistent and central challenge of Internet topology research. bdrmapIT achieves 91.8%-98.8% accuracy when mapping AS boundaries in two Internet-wide traceroute datasets, vastly improving on MAP-IT's coverage without sacrificing bdrmap's ability to map a single network. The bdrmapIT source code is available at https://git.io/fAsI0. 
    more » « less
  4. There is significant interest in the technical and policy communities regarding the extent, scope, and consumer harm of persistent interdomain congestion. We provide empirical grounding for discussions of interdomain congestion by developing a system and method to measure congestion on thousands of interdomain links without direct access to them. We implement a system based on the Time Series Latency Probes (TSLP) technique that identifies links with evidence of recurring congestion suggestive of an under-provisioned link. We deploy our system at 86 vantage points worldwide and show that congestion inferred using our lightweight TSLP method correlates with other metrics of interconnection performance impairment. We use our method to study interdomain links of eight large U.S. broadband access providers from March 2016 to December 2017, and validate our inferences against ground-truth traffic statistics from two of the providers. For the period of time over which we gathered measurements, we did not find evidence of widespread endemic congestion on interdomain links between access ISPs and directly connected transit and content providers, although some such links exhibited recurring congestion patterns. We describe limitations, open challenges, and a path toward the use of this method for large-scale third-party monitoring of the Internet interconnection ecosystem. 
    more » « less