skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ludowieg, Herbert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Vibrational Raman optical activity (ROA) spectra were calculated under off‐resonance, near‐resonance, and at‐resonance conditions for(A) and under off‐resonance conditions for(B) using a new driver software for calculating the ROA intensities from complex (damped) time‐dependent linear response Kohn‐Sham theory. The off‐resonance spectra ofAandBshow many similarities. At an incident laser wavelength of 532 nm, used in commercial ROA spectrometers, the spectrum ofAis enhanced by near‐resonance with the ligand‐field transitions of the complex. The near‐resonance spectrum exhibits many qualitative differences compared with the off‐resonance case, but it remains bi‐signate. Even under full resonance with the ligand‐field electronic transitions, the ROA spectrum ofAremains bi‐signate when the electronic transitions are broadened such as to yield absorption line widths that are comparable with those in the experimental UV‐vis absorption and electronic circular dichroism spectra. 
    more » « less