skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luedtke, Jim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optimization problems that involve topology opti- mization in scenarios with large scale outages, such as post- disaster restoration or public safety power shutoff planning, are very challenging to solve. Using simple power flow representa- tions such as DC power flow or network flow models results in low quality solutions which requires significantly higher- than-predicted load shed to become AC feasible. Recent work has shown that formulations based on the Second Order Cone (SOC) power flow formulation find very high quality solutions with low load shed, but the computational burden of these formulations remains a significant challenge. With the aim of reducing computational time while maintaining high solution quality, this work explores formulations which replace the conic constraints with a small number of linear cuts. The goal of this approach is not to find an exact power flow solution, but rather to identify good binary decisions, where the power flow can be resolved after the binary variables are fixed. We find that a simple reformulation of the Second Order Cone Optimal Power Shutoff problem can greatly improve the solution speed, but that a full linearization of the SOC voltage cone equation results in an overestimation of the amount of power that can be delivered to loads. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026