skip to main content

Search for: All records

Creators/Authors contains: "Lui, John C.S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 19, 2024
  2. Free, publicly-accessible full text available May 17, 2024
  3. Mining from a big graph those subgraphs that satisfy certain conditions is useful in many applications such as community detection and subgraph matching. These problems have a high time complexity, but existing systems to scale them are all IO-bound in execution. We propose the first truly CPU-bound distributed framework called G-thinker that adopts a user-friendly subgraph-centric vertex-pulling API for writing distributed subgraph mining algorithms. To utilize all CPU cores of a cluster, G-thinker features (1) a highly-concurrent vertex cache for parallel task access and (2) a lightweight task scheduling approach that ensures high task throughput. These designs well overlap communication with computation to minimize the CPU idle time. Extensive experiments demonstrate that G-thinker achieves orders of magnitude speedup compared even with the fastest existing subgraph-centric system, and it scales well to much larger and denser real network data. G-thinker is open-sourced at with detailed documentation.