skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lun, Zhengyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1.  
    more » « less
  2. Abstract

    Relating the synthesis conditions of materials to their functional performance has long been an experience‐based trial‐and‐error process. However, this methodology is not always efficient in identifying an appropriate protocol and can lead to overlooked opportunities for the performance optimization of materials through simple modifications of the synthesis process. In this work, the authors systematically track the structural evolution in the synthesis of a representative disordered rock salt (a promising next‐generation Li‐ion cathode material) at the scale of both the long‐range crystal structure and the short‐range atomic structure using various in situ and ex situ techniques, including transmission electron microscopy, X‐ray diffraction, and pair distribution function analysis. An optimization strategy is proposed for the synthesis protocol, leading to a remarkably enhanced capacity (specific energy) of 313 mAh g−1(987 Wh kg−1) at a low rate (20 mA g−1), with a capacity of more than 140 mAh g−1retained even at a very high cycling rate of 2000 mA g−1. This strategy is further rationalized using ab initio calculations, and important opportunities for synthetic optimization demonstrated in this study are highlighted.

     
    more » « less
  3. Abstract

    Fluorine substitution is a critical enabler for improving the cycle life and energy density of disordered rocksalt (DRX) Li‐ion battery cathode materials which offer prospects for high energy density cathodes, without the reliance on limited mineral resources. Due to the strong Li–F interaction, fluorine also is expected to modify the short‐range cation order in these materials which is critical for Li‐ion transport. In this work, density functional theory and Monte Carlo simulations are combined to investigate the impact of Li–F short‐range ordering on the formation of Li percolation and diffusion in DRX materials. The modeling reveals that F substitution is always beneficial at sufficiently high concentrations and can, surprisingly, even facilitate percolation in compounds without Li excess, giving them the ability to incorporate more transition metal redox capacity and thereby higher energy density. It is found that for F levels below 15%, its effect can be beneficial or disadvantageous depending on the intrinsic short‐range order in the unfluorinated oxide, while for high fluorination levels the effects are always beneficial. Using extensive simulations, a map is also presented showing the trade‐off between transition‐metal capacity, Li‐transport, and synthetic accessibility, and two of the more extreme predictions are experimentally confirmed.

     
    more » « less
  4. Abstract

    The recent discovery of Li‐excess cation‐disordered rock salt cathodes has greatly enlarged the design space of Li‐ion cathode materials. Evidence of facile lattice fluorine substitution for oxygen has further provided an important strategy to enhance the cycling performance of this class of materials. Here, a group of Mn3+–Nb5+‐based cation‐disordered oxyfluorides, Li1.2Mn3+0.6+0.5xNb5+0.2−0.5xO2−xFx(x= 0, 0.05, 0.1, 0.15, 0.2) is investigated and it is found that fluorination improves capacity retention in a very significant way. Combining spectroscopic methods and ab initio calculations, it is demonstrated that the increased transition‐metal redox (Mn3+/Mn4+) capacity that can be accommodated upon fluorination reduces reliance on oxygen redox and leads to less oxygen loss, as evidenced by differential electrochemical mass spectroscopy measurements. Furthermore, it is found that fluorine substitution also decreases the Mn3+‐induced Jahn–Teller distortion, leading to an orbital rearrangement that further increases the contribution of Mn‐redox capacity to the overall capacity.

     
    more » « less
  5. Design rules for high capacity disordered rocksalt Li-ion cathodes applied to the Li–Mn–V–O–F system.

     
    more » « less