skip to main content

Search for: All records

Creators/Authors contains: "Lund, Andrea J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Water resources development promotes agricultural expansion and food security. But are these benefits offset by increased infectious disease risk? Dam construction on the Senegal River in 1986 was followed by agricultural expansion and increased transmission of human schistosomes. Yet the mechanisms linking these two processes at the individual and household levels remain unclear. We investigated the association between household land use and schistosome infection in children. Methods We analyzed cross-sectional household survey data ( n  = 655) collected in 16 rural villages in August 2016  across demographic, socio-economic and land use dimensions, which were matched to Schistosoma haematobium ( nmore » = 1232) and S. mansoni ( n  = 1222) infection data collected from school-aged children. Mixed effects regression determined the relationship between irrigated area and schistosome infection presence and intensity. Results Controlling for socio-economic and demographic risk factors, irrigated area cultivated by a household was associated with an increase in the presence of S. haematobium infection (odds ratio [ OR ] = 1.14; 95% confidence interval [95% CI ]: 1.03–1.28) but not S. mansoni infection ( OR  = 1.02; 95% CI : 0.93–1.11). Associations between infection intensity and irrigated area were positive but imprecise ( S. haematobium: rate ratio [ RR ] = 1.05; 95% CI : 0.98–1.13, S. mansoni : RR  = 1.09; 95% CI : 0.89–1.32). Conclusions Household engagement in irrigated agriculture increases individual risk of S. haematobium but not S. mansoni infection. Increased contact with irrigated landscapes likely drives exposure, with greater impacts on households relying on agricultural livelihoods.« less
    Free, publicly-accessible full text available December 1, 2022
  2. Lamberton, Poppy H. (Ed.)
    Background Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water. By increasing reliance on hazardous activities and environments, socio-economic vulnerability can hinder reductions in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and vulnerability to the presence and intensity of Schistosoma haematobium re-infection. Methodology/Principal findings In 13 villages along the Senegal River, we collected parasitologicalmore »data from 821 school-aged children, survey data from 411 households where those children resided, and ecological data from all 24 village water access sites. We fit mixed-effects logistic and negative binomial regressions with indices of exposure, hazard, and vulnerability as explanatory variables of Schistosoma haematobium presence and intensity, respectively, controlling for demographic variables. Using multi-model inference to calculate the relative importance of each component of risk, we found that hazard (Ʃw i = 0.95) was the most important component of S . haematobium presence, followed by vulnerability (Ʃw i = 0.91). Exposure (Ʃw i = 1.00) was the most important component of S . haematobium intensity, followed by hazard (Ʃw i = 0.77). Model averaging quantified associations between each infection outcome and indices of exposure, hazard, and vulnerability, revealing a positive association between hazard and infection presence (OR = 1.49, 95% CI 1.12, 1.97), and a positive association between exposure and infection intensity (RR 2.59–3.86, depending on the category; all 95% CIs above 1) Conclusions/Significance Our findings underscore the linkages between social (exposure and vulnerability) and environmental (hazard) processes in the acquisition and accumulation of S . haematobium infection. This approach highlights the importance of implementing both social and environmental interventions to complement mass drug administration.« less
    Free, publicly-accessible full text available October 5, 2022
  3. Secor, W. Evan (Ed.)
    Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species. This study estimates factors associated with schistosomiasis risk in 16 villages located in the Senegal River Basin, a region hyperendemic formore »Schistosoma haematobium and S . mansoni . We first analyzed the spatial distributions of the two schistosomes’ intermediate host snails ( Bulinus spp. and Biomphalaria pfeifferi , respectively) at village water access sites. Then, we separately evaluated the relationships between human S . haematobium and S . mansoni infections and (i) the area of remotely-sensed snail habitat across spatial extents ranging from 1 to 120 m from shorelines, and (ii) water access site size and shape characteristics. We compared the influence of snail habitat across spatial extents because, while snail sampling is traditionally done near shorelines, we hypothesized that snails further from shore also contribute to infection risk. We found that, controlling for demographic variables, human risk for S . haematobium infection was positively correlated with snail habitat when snail habitat was measured over a much greater radius from shore (45 m to 120 m) than usual. S . haematobium risk was also associated with large, open water access sites. However, S . mansoni infection risk was associated with small, sheltered water access sites, and was not positively correlated with snail habitat at any spatial sampling radius. Our findings highlight the need to consider different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes.« less
    Free, publicly-accessible full text available September 27, 2022
  4. null (Ed.)
    Dams enable the production of food and renewable energy, making them a crucial tool for both economic development and climate change adaptation in low- and middle-income countries. However, dams may also disrupt traditional livelihood systems and increase the transmission of vector- and water-borne pathogens. These livelihood and health impacts diminish the benefits of dams to rural populations dependent on rivers, as hydrological and ecological alterations change flood regimes, reduce nutrient transport and lead to the loss of biodiversity. We propose four agricultural innovations for promoting equity, health, sustainable development, and climate resilience in dammed watersheds: (1) restoring migratory aquatic species,more »(2) removing submerged vegetation and transforming it into an agricultural resource, (3) restoring environmental flows and (4) integrating agriculture and aquaculture. As investment in dams accelerates in low- and middle-income countries, appropriately addressing their livelihood and health impacts can improve the sustainability of modern agriculture and economic development in a changing climate.« less
  5. Schistosomiasis, or “snail fever”, is a parasitic disease affecting over 200 million people worldwide. People become infected when exposed to water containing particular species of freshwater snails. Habitats for such snails can be mapped using lightweight, inexpensive and field-deployable consumer-grade Unmanned Aerial Vehicles (UAVs), also known as drones. Drones can obtain imagery in remote areas with poor satellite imagery. An unexpected outcome of using drones is public engagement. Whereas sampling snails exposes field technicians to infection risk and might disturb locals who are also using the water site, drones are novel and fun to watch, attracting crowds that can bemore »educated about the infection risk.« less