skip to main content

Search for: All records

Creators/Authors contains: "Lund, Robert B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate changepoint (homogenization) methods abound today, with a myriad of techniques existing in both the climate and statistics literature. Unfortunately, the appropriate changepoint technique to use remains unclear to many. Further complicating issues, changepoint conclusions are not robust to perturbations in assumptions; for example, allowing for a trend or correlation in the series can drastically change changepoint conclusions. This paper is a review of the topic, with an emphasis on illuminating the models and techniques that allow the scientist to make reliable conclusions. Pitfalls to avoid are demonstrated via actual applications. The discourse begins by narrating the salient statistical features of most climate time series. Thereafter, single- and multiple-changepoint problems are considered. Several pitfalls are discussed en route and good practices are recommended. While most of our applications involve temperatures, a sea ice series is also considered.

    Significance Statement

    This paper reviews the methods used to identify and analyze the changepoints in climate data, with a focus on helping scientists make reliable conclusions. The paper discusses common mistakes and pitfalls to avoid in changepoint analysis and provides recommendations for best practices. The paper also provides examples of how these methods have been applied to temperature and sea ice data. The main goal of the paper is to provide guidance on how to effectively identify the changepoints in climate time series and homogenize the series.

    more » « less
  2. Abstract

    This paper develops a mathematical model and statistical methods to quantify trends in presence/absence observations of snow cover (not depths) and applies these in an analysis of Northern Hemispheric observations extracted from satellite flyovers during 1967–2021. A two-state Markov chain model with periodic dynamics is introduced to analyze changes in the data in a cell by cell fashion. Trends, converted to the number of weeks of snow cover lost/gained per century, are estimated for each study cell. Uncertainty margins for these trends are developed from the model and used to assess the significance of the trend estimates. Cells with questionable data quality are explicitly identified. Among trustworthy cells, snow presence is seen to be declining in almost twice as many cells as it is advancing. While Arctic and southern latitude snow presence is found to be rapidly receding, other locations, such as eastern Canada, are experiencing advancing snow cover.

    Significance Statement

    This project quantifies how the Northern Hemisphere’s snow cover has recently changed. Snow cover plays a critical role in the global energy balance due to its high albedo and insulating characteristics and is therefore a prominent indicator of climate change. On a regional scale, the spatial consistency of snow cover influences surface temperatures via variations in absorbed solar radiation, while continental-scale snow cover acts to maintain thermal stability in the Arctic and subarctic regions, leading to spatial and temporal impacts on global circulation patterns. Changing snow presence in Arctic regions could influence large-scale releases of carbon and methane gas. Given the importance of snow cover, understanding its trends enhances our understanding of climate change.

    more » « less
  3. Abstract Diagnosis, treatment, and prevention of vector-borne disease (VBD) in pets is one cornerstone of companion animal practices. Veterinarians are facing new challenges associated with the emergence, reemergence, and rising incidence of VBD, including heartworm disease, Lyme disease, anaplasmosis, and ehrlichiosis. Increases in the observed prevalence of these diseases have been attributed to a multitude of factors, including diagnostic tests with improved sensitivity, expanded annual testing practices, climatologic and ecological changes enhancing vector survival and expansion, emergence or recognition of novel pathogens, and increased movement of pets as travel companions. Veterinarians have the additional responsibility of providing information about zoonotic pathogen transmission from pets, especially to vulnerable human populations: the immunocompromised, children, and the elderly. Hindering efforts to protect pets and people is the dynamic and ever-changing nature of VBD prevalence and distribution. To address this deficit in understanding, the Companion Animal Parasite Council (CAPC) began efforts to annually forecast VBD prevalence in 2011. These forecasts provide veterinarians and pet owners with expected disease prevalence in advance of potential changes. This review summarizes the fidelity of VBD forecasts and illustrates the practical use of CAPC pathogen prevalence maps and forecast data in the practice of veterinary medicine and client education. 
    more » « less