skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lunt, Daniel_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate models require boundary condition information, such as vegetation and soil distributions because they influence the mean state climate, and feedbacks can significantly influence regional climate and climate sensitivity to CO2forcing. Information about past distributions comes primarily from the paleobotanical record, which is often supplemented by a vegetation model to fill data gaps. For recent past periods such as the Pliocene, a quantitative suitability assessment of these vegetation model simulations is sufficient. However, the Miocene Climate Optimum spanning 16.9–14.7 Ma was the warmest period on Earth over the last ∼25 million years and models struggle to reproduce those conditions for the range of paleogeographies and CO2concentrations tested, particularly at high latitudes. Here we bring together the Miocene modeling and data communities to update previous vegetation reconstructions used for climate modeling with a new regional approach that relaxes the requirement for a single model simulation to be used, blending instead simulations forced by different paleogeographies and CO2concentrations. This ensures the simulated vegetation is first, and foremost, consistent with the paleorecord and provides a baseline for future comparisons. The reconstruction shows global increases in forest cover at all latitudes as compared to today and extensive C3grasslands across the high northern latitudes. Data gaps at high latitudes are filled with vegetation models forced by higher CO2concentrations than were required at lower latitudes consistent with the inability of current models to simulate Miocene high latitude warmth. 
    more » « less
  2. Abstract Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet‐gets‐wetter, dry‐gets‐drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data‐modeling approach to reconstruct global and zonal‐mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep‐Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid‐ (30°–60°N/S) and high‐latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter‐Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation‐evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter‐model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy‐derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation‐induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns. 
    more » « less