skip to main content

Search for: All records

Creators/Authors contains: "Luo, Hongmei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 18, 2024
  2. Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical, electronic and optoelectronic properties of the materials, especially low-dimensional materials. Two-dimensional (2D) organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field; nevertheless, studies on this remain elusive. Here we report on how the surface depletion field affects the structural phase transition, quantum confinement and Stark effect in 2D (BA)2PbI4 perovskite microplates by the thickness-, temperature- and power-dependent photoluminescence (PL) spectroscopy. Power dependent PL studies suggest that high-temperature phase (HTP) and low-temperature phase (LTP) can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates. With the decrease of the microplate thickness, the structural phase transition temperature first gradually decreases and then increases below 25 nm, in striking contrast to the conventional size dependent structural phase transition. Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase, the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs. This explanation was further supported by the temperature dependent PLmore »studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes. Along with the thickness dependent phase transition, the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.« less
  3. All-inorganic lead halide perovskites have been extensively studied in the past several years due to their superior stability against moisture, oxygen, light, and heat compared with their organic–inorganic counterparts. CsPbBr3 with suitable band gap and ultrahigh photoluminescence quantum yield is a promising candidate for pure green emitter in the backlighting display to fill the so-called “green gap.” Here, vapor-phase growth of CsPbBr3 microspheres is reported for highly efficient pure green light emission. The as-synthesized microspheres exhibit a stronger photoluminescence (PL) intensity with a photoluminescence quantum yield of 75% resulting from the lower energy of longitudinal optical phonons revealed by temperature dependent PL studies. Importantly, with the diameter increasing from 2 to 50 μm the PL peak positions of the microspheres can be readily tuned from 527 to 539 nm, well filling the so-called “green gap.” The red-shift with increasing diameter can be ascribed to the reabsorption process during the photon propagation inside the microspheres. The studies provide a route to improve the photoluminescence quantum yield in all-inorganic lead halide perovskites, but also suggest an alternative approach to achieve the pure green emission for the backlighting display.