Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Silicon vacancy (VSi) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties, including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of VSi centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasize the importance of optimizing emitter−cavity interactions for efficient quantum photonic applications.more » « lessFree, publicly-accessible full text available September 9, 2025
-
High-contrast optically detected magnetic resonance is a valuable property for reading out the spin of isolated defect colour centres at room temperature. Spin-active single defect centres have been studied in wide bandgap materials including diamond, SiC and hexagonal boron nitride, each with associated advantages for applications. We report the discovery of optically detected magnetic resonance in two distinct species of bright, isolated defect centres hosted in GaN. In one group, we find negative optically detected magnetic resonance of a few percent associated with a metastable electronic state, whereas in the other, we find positive optically detected magnetic resonance of up to 30% associated with the ground and optically excited electronic states. We examine the spin symmetry axis of each defect species and establish coherent control over a single defect’s ground-state spin. Given the maturity of the semiconductor host, these results are promising for scalable and integrated quantum sensing applications.more » « lessFree, publicly-accessible full text available February 12, 2025
-
Abstract Single-photon defect emitters (SPEs), especially those with magnetically and optically addressable spin states, in technologically mature wide bandgap semiconductors are attractive for realizing integrated platforms for quantum applications. Broadening of the zero phonon line (ZPL) caused by dephasing in solid state SPEs limits the indistinguishability of the emitted photons. Dephasing also limits the use of defect states in quantum information processing, sensing, and metrology. In most defect emitters, such as those in SiC and diamond, interaction with low-energy acoustic phonons determines the temperature dependence of the dephasing rate and the resulting broadening of the ZPL with the temperature obeys a power law. GaN hosts bright and stable single-photon emitters in the 600–700 nm wavelength range with strong ZPLs even at room temperature. In this work, we study the temperature dependence of the ZPL spectra of GaN SPEs integrated with solid immersion lenses with the goal of understanding the relevant dephasing mechanisms. At temperatures below ~ 50 K, the ZPL lineshape is found to be Gaussian and the ZPL linewidth is temperature independent and dominated by spectral diffusion. Above ~ 50 K, the linewidth increases monotonically with the temperature and the lineshape evolves into a Lorentzian. Quite remarkably, the temperature dependence of the linewidth does not follow a power law. We propose a model in which dephasing caused by absorption/emission of optical phonons in an elastic Raman process determines the temperature dependence of the lineshape and the linewidth. Our model explains the temperature dependence of the ZPL linewidth and lineshape in the entire 10–270 K temperature range explored in this work. The ~ 19 meV optical phonon energy extracted by fitting the model to the data matches remarkably well the ~ 18 meV zone center energy of the lowest optical phonon band (
) in GaN. Our work sheds light on the mechanisms responsible for linewidth broadening in GaN SPEs. Since a low energy optical phonon band ($$E_{2}(low)$$ ) is a feature of most group III–V nitrides with a wurtzite crystal structure, including hBN and AlN, we expect our proposed mechanism to play an important role in defect emitters in these materials as well.$$E_{2}(low)$$ -
Abstract The recently discovered spin-active boron vacancy (V
) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system from$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ D 3h toC 2v . Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.