skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Jiayi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Locusts exhibit remarkable phenotypic plasticity changing their appearance and behavior from solitary to gregarious when population density increases. These changes include morphological differences in the size and shape of brain regions, but little is known about plasticity within individual neurons and alterations in behavior not directly related to aggregation or swarming. We investigated looming escape behavior and the properties of a well-studied collision-detection neuron in gregarious and solitarious animals of three closely related species, the desert locust (Schistocerca gregaria), the Central American locust (S. piceifrons) and the American bird grasshopper (S. americana). For this neuron, the lobula giant movement detector (LGMD), we examined dendritic morphology, membrane properties, gene expression, and looming responses. Gregarious animals reliably jumped in response to looming stimuli, but surprisingly solitarious desert locusts did not produce escape jumps. These solitarious animals also had smaller LGMD dendrites. This is the first study done on three different species of grasshoppers to observe the effects of phenotypic plasticity on the jump escape behavior, physiology and transcriptomics of these animals. Unexpectedly, there were little differences in these properties between the two phases except for behavior. For the three species, gregarious animals jumped more than solitarious animals, but no significant differences were found between the two phases of animals in the electrophysiological and transcriptomics studies of the LGMD. Our results suggest that phase change impacts mainly the motor system and that the physiological properties of motor neurons need to be characterized to understand fully the variation in jump escape behavior across phases. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026
  2. Synapses are crucial structures that mediate signal transmission between neurons in complex neural circuits and display considerable morphological and electrophysiological heterogeneity. So far we still lack a high-throughput method to profile the molecular heterogeneity among individual synapses. In the present study, we develop a droplet-based single-cell (sc) total-RNA-sequencing platform, called Multiple-Annealing-and-Tailing-based Quantitative scRNA-seq in Droplets, for transcriptome profiling of individual neurites, primarily composed of synaptosomes. In the synaptosome transcriptome, or ‘synaptome’, profiling of both mouse and human brain samples, we detect subclusters among synaptosomes that are associated with neuronal subtypes and characterize the landscape of transcript splicing that occurs within synapses. We extend synaptome profiling to synaptopathy in an Alzheimer’s disease (AD) mouse model and discover AD-associated synaptic gene expression changes that cannot be detected by single-nucleus transcriptome profiling. Overall, our results show that this platform provides a high-throughput, single-synaptosome transcriptome profiling tool that will facilitate future discoveries in neuroscience. 
    more » « less
  3. ARID1A is one of the most frequently mutated epigenetic regulators in a wide spectrum of cancers. Recent studies have shown that ARID1A deficiency induces global changes in the epigenetic landscape of enhancers and promoters. These broad and complex effects make it challenging to identify the driving mechanisms of ARID1A deficiency in promoting cancer progression. Here, we identified the anti-senescence effect of Arid1a deficiency in the progression of pancreatic intraepithelial neoplasia (PanIN) by profiling the transcriptome of individual PanINs in a mouse model. In a human cell line model, we found that ARID1A deficiency upregulates the expression of aldehyde dehydrogenase 1 family member A1 ( ALDH1A1 ), which plays an essential role in attenuating the senescence induced by oncogenic KRAS through scavenging reactive oxygen species. As a subunit of the SWI/SNF chromatin remodeling complex, our ATAC sequencing data showed that ARID1A deficiency increases the accessibility of the enhancer region of ALDH1A1 . This study provides the first evidence that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS -induced senescence through the upregulation of ALDH1A1 expression. 
    more » « less