skip to main content


Search for: All records

Creators/Authors contains: "Luo, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 8, 2024
  2.  
    more » « less
  3. Mg 2 GeO 4 is important as an analog for the ultrahigh-pressure behavior of Mg 2 SiO 4 , a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, Th 3 P 4 -type structure. DFT computations suggest partial Mg-Ge order, resulting in a tetragonal I 4 ¯ 2 d structure indistinguishable from I 4 ¯ 3 d Th 3 P 4 in our experiments. If applicable to silicates, the formation of this highly coordinated and intrinsically disordered phase may have important implications for the interior mineralogy of large, rocky extrasolar planets. 
    more » « less
  4. Light elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m −1 ⋅K −1 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core. 
    more » « less
  5. Abstract

    Definitions for a local pressure in an inhomogeneous fluid are considered for both equilibrium and local equilibrium states. Thermodynamic and mechanical (hydrodynamic) contexts are reconciled. Remaining problems and uncertainties are discussed.

     
    more » « less
  6. Abstract

    Definitions for a local pressure in an inhomogeneous fluid are considered for both equilibrium and local equilibrium states. Thermodynamic and mechanical (hydrodynamic) contexts are reconciled. Remaining problems and uncertainties are discussed.

     
    more » « less