skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Renjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The spin Seebeck effect (SSE) is sensitive to thermally driven magnetic excitations in magnetic insulators. Vanadium dioxide in its insulating low-temperature phase is expected to lack magnetic degrees of freedom, as vanadium atoms are thought to form singlets upon dimerization of the vanadium chains. Instead, we find a paramagnetic SSE response in V⁢O2 films that grows as the temperature decreases below 50 K. The field and temperature-dependent SSE voltage is qualitatively consistent with a general model of paramagnetic SSE response and inconsistent with triplet spin transport. Quantitative estimates find a spin Seebeck coefficient comparable in magnitude to that observed in strongly magnetic materials. The microscopic nature of the magnetic excitations in V⁢O2 requires further examination. 
    more » « less
  2. As spin caloritronic measurements become increasingly common techniques for characterizing material properties, it is important to quantify potentially confounding effects. We report measurements of the Nernst–Ettingshausen response from room temperature to 5 K in thin film wires of Pt and W, metals commonly used as inverse spin Hall detectors in spin Seebeck characterization. Johnson–Nyquist noise thermometry is used to assess the temperature change in the metals with heater power at low temperatures, and the thermal path is analyzed via finite-element modeling. The Nernst–Ettingshausen response of W is found to be approximately temperature-independent, while the response of Pt increases at low temperatures. These results are discussed in the context of theoretical expectations and the possible role of magnetic impurities in Pt. 
    more » « less
  3. The low temperature monoclinic, insulating phase of vanadium dioxide is ordinarily considered nonmagnetic, with dimerized vanadium atoms forming spin singlets, though paramagnetic response is seen at low temperatures. We find a nonlocal spin Seebeck signal in VO2 films that appears below 30 K and that increases with a decrease in temperature. The spin Seebeck response has a nonhysteretic dependence on the in-plane external magnetic field. This paramagnetic spin Seebeck response is discussed in terms of prior findings on paramagnetic spin Seebeck effects and expected magnetic excitations of the monoclinic ground state. 
    more » « less