skip to main content

Search for: All records

Creators/Authors contains: "Luo, Xiangzhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plants with the C4photosynthesis pathway typically respond to climate change differently from more common C3-type plants, due to their distinct anatomical and biochemical characteristics. These different responses are expected to drive changes in global C4and C3vegetation distributions. However, current C4vegetation distribution models may not predict this response as they do not capture multiple interacting factors and often lack observational constraints. Here, we used global observations of plant photosynthetic pathways, satellite remote sensing, and photosynthetic optimality theory to produce an observation-constrained global map of C4vegetation. We find that global C4vegetation coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019. This was the net result of a reduction in C4natural grass cover due to elevated CO2favoring C3-type photosynthesis, and an increase in C4crop cover, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4vegetation contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18–23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on the critical and underappreciated role of C4plants in the contemporary global carbon cycle.

    more » « less
  2. Abstract Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential. 
    more » « less
  3. Summary

    Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax) and leaf N content in enhanced‐CO2experiments and satellite records signify increasing N limitation of primary production. We predictedVcmaxusing the coordination hypothesis and estimated changes in leaf‐level photosynthetic N for 1982–2016 assuming proportionality with leaf‐levelVcmaxat 25°C. The whole‐canopy photosynthetic N was derived using satellite‐based leaf area index (LAI) data and an empirical extinction coefficient forVcmax, and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern ofVcmaxshares key features with an independent reconstruction from remotely sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27% yr−1, while observed leaf (total) N declined by 0.2–0.25% yr−1. Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf‐level responses to rising CO2, and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation.

    more » « less
  4. null (Ed.)