skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lutz, Tim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 19, 2025
  2. Free, publicly-accessible full text available October 11, 2025
  3. Abstract Aerospace composites assemblies/joining demand ultra-high precision due to critical safety requirements, which necessitate adherence to indicators of risk that are often difficult to quantify. This study examines one important indicator, the residual stress that arises as a result of dimensional mismatch between mating components during the composite structures assembly process. Conventional simulations of large components assemblies investigated the process at a local or global scale, but lacked detailed exploitation of multi-layer stress analysis at integrated scale for composite structures. We develop a novel digital twin simulation for joining large composite structures with mechanical fasteners. The digital twin simulation integrates global features and local features for detailed investigation of stresses. We perform a statistical analysis to better understand the numerical properties of residual stresses after the fastening. Goodness-of-Fit tests and normality tests are used to explore the probabilistic distributions of the stresses exceeding a chosen safety threshold. The case study is conducted based on composite fuselage joining. The results show the stresses in composite structures assembly follow extreme value distributions (such as Weibull, Gumbel) rather than the widely used Gaussian distribution. The stresses in joined composite structures differ across layers, which can be attributed to the anisotropic material behavior. 
    more » « less