- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Cui, Youtian (3)
-
King, Edward (3)
-
Li, Han (3)
-
Luu, Emma (3)
-
Aspacio, Derek (2)
-
Luo, Ray (2)
-
Maxel, Sarah (2)
-
Siegel, Justin B (2)
-
Zhang, Yulai (2)
-
Black, William B (1)
-
Chu, Alexander (1)
-
Hagerty, Raine (1)
-
Kenney, Karissa C. (1)
-
Minn, Derek (1)
-
Perea, Sean (1)
-
Siegel, Justin B. (1)
-
Weiss, Gregory A. (1)
-
Worakaensai, Suphanida (1)
-
Wu, Yongxian (1)
-
Zhu, Qiang (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Aspacio, Derek; Luu, Emma; Worakaensai, Suphanida; Cui, Youtian; Maxel, Sarah; King, Edward; Hagerty, Raine; Chu, Alexander; Minn, Derek; Siegel, Justin B; et al (, ACS Catalysis)Free, publicly-accessible full text available July 5, 2025
-
King, Edward; Maxel, Sarah; Zhang, Yulai; Kenney, Karissa C.; Cui, Youtian; Luu, Emma; Siegel, Justin B.; Weiss, Gregory A.; Luo, Ray; Li, Han (, Nature Communications)Abstract Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN+) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN+-based reducing power. This is based on an orthogonal, NMN+-dependent glycolytic pathway inEscherichia coliwhich can be coupled to any reciprocal enzyme to recycle the ensuing reduced NMN+. With a throughput of >106variants per iteration, the growth selection discovers aLactobacillus pentosusNADH oxidase variant with ~10-fold increase in NMNH catalytic efficiency and enhanced activity for other NCBs. Molecular modeling and experimental validation suggest that instead of directly contacting NCBs, the mutations optimize the enzyme’s global conformational dynamics to resemble the WT with the native cofactor bound. Restoring the enzyme’s access to catalytically competent conformation states via deep navigation of protein sequence space with high-throughput evolution provides a universal route to engineer NCB-dependent enzymes.more » « less