skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ly, Sinaro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A three‐dimensional convolutional neural network (3D‐CNN) was developed for the analysis of volumetric optical coherence tomography (OCT) images to enhance endoscopic guidance during percutaneous nephrostomy. The model was performance‐benchmarked using a 10‐fold nested cross‐validation procedure and achieved an average test accuracy of 90.57% across a dataset of 10 porcine kidneys. This performance significantly exceeded that of 2D‐CNN models that attained average test accuracies ranging from 85.63% to 88.22% using 1, 10, or 100 radial sections extracted from the 3D OCT volumes. The 3D‐CNN (~12 million parameters) was benchmarked against three state‐of‐the‐art volumetric architectures: the 3D Vision Transformer (3D‐ViT, ~45 million parameters), 3D‐DenseNet121 (~12 million parameters), and the Multi‐plane and Multi‐slice Transformer (M3T, ~29 million parameters). While these models achieved comparable inferencing accuracy, the 3D‐CNN exhibited lower inference latency (33 ms) than 3D‐ViT (86 ms), 3D‐DenseNet121 (58 ms), and M3T (93 ms), representing a critical advantage for real‐time surgical guidance applications. These results demonstrate the 3D‐CNN's capability as a powerful and practical tool for computer‐aided diagnosis in OCT‐guided surgical interventions. 
    more » « less
    Free, publicly-accessible full text available July 25, 2026
  2. The variability and biases in the real-world performance benchmarking of deep learning models for medical imaging compromise their trustworthiness for real-world deployment. The common approach of holding out a single fixed test set fails to quantify the variance in the estimation of test performance metrics. This study introduces NACHOS (Nested and Automated Cross-validation and Hyperparameter Optimization using Supercomputing) to reduce and quantify the variance of test performance metrics of deep learning models. NACHOS integrates Nested Cross-Validation (NCV) and Automated Hyperparameter Optimization (AHPO) within a parallelized high-performance computing (HPC) framework. NACHOS was demonstrated on a chest X-ray repository and an Optical Coherence Tomography (OCT) dataset under multiple data partitioning schemes. Beyond performance estimation, DACHOS (Deployment with Automated Cross-validation and Hyperparameter Optimization using Supercomputing) is introduced to leverage AHPO and cross-validation to build the final model on the full dataset, improving expected deployment performance. The findings underscore the importance of NCV in quantifying and reducing estimation variance, AHPO in optimizing hyperparameters consistently across test folds, and HPC in ensuring computational feasibility. By integrating these methodologies, NACHOS and DACHOS provide a scalable, reproducible, and trustworthy framework for DL model evaluation and deployment in medical imaging. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026