Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Power of Population Effect in Temnothorax Ants House-Hunting: A Computational Modeling Approach.The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bio-inspired design. In this study, we investigated the house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We developed a tractable model that encodes accurate individual behavior rules, and estimated our parameter values by matching simulated behaviors with observed ones on both the individual and group levels. We then used our model to explore a potential, but yet untested, component of the ants’ decision algorithm. Specifically, we examined the hypothesis that incorporating site population (the numbermore »Free, publicly-accessible full text available January 1, 2023
-
Convolutional neural networks (CNNs), a class of deep learning models, have experienced recent success in modeling sensory cortices and retinal circuits through optimizing performance on machine learning tasks, otherwise known as task optimization. Previous research has shown task-optimized CNNs to be capable of providing explanations as to why the retina efficiently encodes natural stimuli and how certain retinal cell types are involved in efficient encoding. In our work, we sought to use task-optimized CNNs as a means of explaining computational mechanisms responsible for motion-selective retinal circuits. We designed a biologically constrained CNN and optimized its performance on a motion-classification task.more »Free, publicly-accessible full text available January 1, 2023
-
We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modeled as a probabilistic agent with limited power, and there is no central control governing the ants. We show an O( log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Furthermore, we show a matching upper bound of expected O( log n) rounds for environmentsmore »Free, publicly-accessible full text available January 1, 2023
-
We use a recently developed synchronous Spiking Neural Network (SNN) model to study the problem of learning hierarchically-structured concepts. We introduce an abstract data model that describes simple hierarchical concepts. We define a feed-forward layered SNN model, with learning modeled using Oja’s local learning rule, a well known biologically-plausible rule for adjusting synapse weights. We define what it means for such a network to recognize hierarchical concepts; our notion of recognition is robust, in that it tolerates a bounded amount of noise. Then, we present a learning algorithm by which a layered network may learn to recognize hierarchical concepts accordingmore »
-
The decentralized cognition of animal groups is both a challenging biological problem and a potential basis for bio-inspired design. The understanding of these systems and their application can benefit from modeling and analysis of the underlying algorithms. In this study, we define a modeling framework that can be used to formally represent all components of such algorithms. As an example application of the framework, we adapt to it the much-studied house-hunting algorithm used by emigrating colonies of Temnothorax ants to reach consensus on a new nest. We provide a Python simulator that encodes accurate individual behavior rules and produces simulatedmore »
-
We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modelled as a probabilistic agent with limited power, and there is no central control governing the ants. We show a Ω(log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Further, we show a matching upper bound of expected O(log n) rounds for environments with onlymore »
-
Convolutional neural networks (CNN) are an emerging technique in modeling neural circuits and have been shown to converge to biologically plausible functionality in cortical circuits via task-optimization. This functionality has not been observed in CNN models of retinal circuits via task-optimization. We sought to observe this convergence in retinal circuits by designing a biologically inspired CNN model of a motion-detection retinal circuit and optimizing it to solve a motion-classification task. The learned weights and parameters indicated that the CNN converged to direction-sensitive ganglion and amacrine cells, cell types that have been observed in biology, and provided evidence that task-optimization ismore »
-
Convolutional neural networks (CNN) are an emerging technique in modeling neural circuits and have been shown to converge to biologically plausible functionality in cortical circuits via task-optimization. This functionality has not been observed in CNN models of retinal circuits via task-optimization. We sought to observe this convergence in retinal circuits by designing a biologically inspired CNN model of a motion-detection retinal circuit and optimizing it to solve a motion-classification task. The learned weights and parameters indicated that the CNN converged to direction-sensitive ganglion and amacrine cells, cell types that have been observed in biology, and provided evidence that task-optimization ismore »
-
We investigate the importance of quorum sensing in the success of house-hunting of emigrating Temnothorax ant colonies. Specifically, we show that the absence of the quorum sensing mechanism leads to failure of consensus during emigrations. We tackle this problem through the lens of distributed computing by viewing it as a natural distributed consensus algorithm. We develop an agent-based model of the house-hunting process, and use mathematical tools such as conditional probability, concentration bounds and Markov mixing time to rigorously prove the negative impact of not employing the quorum sensing mechanism on emigration outcomes. Our main result is a high probabilitymore »
-
We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modelled as a probabilistic agent with limited power, and there is no central control governing the ants. We show a (log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Further, we show a matching upper bound of expected O(log n) rounds for environments with onlymore »