skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lyu, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 18, 2024
  2. Training activation quantized neural networks involves minimizing a piecewise constant function whose gradient vanishes almost everywhere, which is undesirable for the standard back-propagation or chain rule. An empirical way around this issue is to use a straight-through estimator (STE) (Bengio et al., 2013) in the backward pass only, so that the “gradient” through the modified chain rule becomes non-trivial. Since this unusual “gradient” is certainly not the gradient of loss function, the following question arises: why searching in its negative direction minimizes the training loss? In this paper, we provide the theoretical justification of the concept of STE by answering this question. We consider the problem of learning a two-linear-layer network with binarized ReLU activation and Gaussian input data. We shall refer to the unusual “gradient” given by the STE-modifed chain rule as coarse gradient. The choice of STE is not unique. We prove that if the STE is properly chosen, the expected coarse gradient correlates positively with the population gradient (not available for the training), and its negation is a descent direction for minimizing the population loss. We further show the associated coarse gradient descent algorithm converges to a critical point of the population loss minimization problem. Moreover, we show that a poor choice of STE leads to instability of the training algorithm near certain local minima, which is verified with CIFAR-10 experiments. 
    more » « less
  3. We propose BinaryRelax, a simple two-phase algorithm, for training deep neural networks with quantized weights. The set constraint that characterizes the quantization of weights is not imposed until the late stage of training, and a sequence of pseudo quantized weights is maintained. Specifically, we relax the hard constraint into a continuous regularizer via Moreau envelope, which turns out to be the squared Euclidean distance to the set of quantized weights. The pseudo quantized weights are obtained by linearly interpolating between the float weights and their quantizations. A continuation strategy is adopted to push the weights towards the quantized state by gradually increasing the regularization parameter. In the second phase, exact quantization scheme with a small learning rate is invoked to guarantee fully quantized weights. We test BinaryRelax on the benchmark CIFAR and ImageNet color image datasets to demonstrate the superiority of the relaxed quantization approach and the improved accuracy over the state-of-the-art training methods. Finally, we prove the convergence of BinaryRelax under an approximate orthogonality condition. 
    more » « less