skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MAVINGA, NSOKI"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We establish the existence of maximal and minimal weak solutions   between ordered pairs of weak sub- and super-solutions for a coupled  system of elliptic equations with quasimonotone nonlinearities on the  boundary. We also formulate a finite difference method to approximate the  solutions and establish the existence of maximal and minimal approximations  between ordered pairs of discrete sub- and super-solutions.   Monotone iterations are formulated for constructing the maximal and minimal  solutions when the nonlinearity is monotone.  Numerical simulations are used to explore existence, nonexistence,  uniqueness and non-uniqueness properties of positive solutions.  When the nonlinearities do not satisfy the monotonicity condition, we prove the existence of weak maximal and minimal solutions using Zorn’s  lemma and a version of Kato’s inequality up to the boundary.  For more information see https://ejde.math.txstate.edu/Volumes/2025/43/abstr.html 
    more » « less
  2. We consider a sublinear perturbation of an elliptic eigenvalue problem with Neumann boundary condition. We give sufficient conditions on the nonlinear perturbation which guarantee that the unbounded continuum, bifurcating from infinity at the first eigenvalue, contains an unbounded sequence of turning points as well as an unbounded sequence of resonant solutions. We prove our result by using bifurcation theory combined with a careful analysis of the oscillatory behavior of the continuum near the bifurcation point. 
    more » « less