skip to main content

Search for: All records

Creators/Authors contains: "Ma, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data driven individualized decision making problems have received a lot of attentions in recent years. In particular, decision makers aim to determine the optimal Individualized Treatment Rule (ITR) so that the expected speci ed outcome averaging over heterogeneous patient-speci c characteristics is maximized. Many existing methods deal with binary or a moderate number of treatment arms and may not take potential treatment e ect structure into account. However, the e ectiveness of these methods may deteriorate when the number of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted Learning (GROWL) to estimate the latent structure in the treatment space and the op- timal group-structured ITRs through a single optimization. In particular, for estimating group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vec- tor Machines (RAMSVM) to learn group-based decision rules under the weighted angle based multi-class classi cation framework. Fisher consistency, the excess risk bound, and the convergence rate of the value function are established to provide a theoretical guaran- tee for GROWL. Extensive empirical results in simulation studies and real data analysis demonstrate that GROWL enjoys better performance than several other existing methods. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  2. Abstract

    Delta shoreline structure has long been hypothesized to encode information on the relative influence of fluvial, wave, and tidal processes on delta formation and evolution. We introduce here a novel multiscale characterization of shorelines by defining three process‐informed morphological metrics. We show that this characterization yields self‐emerging classes of morphologically similar deltas, that is, delta morphotypes, and also predicts the dominant forcing of each morphotype. Then we show that the dominant forcings inferred from shoreline structure generally align with those estimated via relative sediment fluxes, while positing that misalignments arise from spatiotemporal heterogeneity in deltaic sediment fluxes not captured in their estimates. The proposed framework for shoreline characterization advances our quantitative understanding of how shoreline features reflect delta forcings, and may aid in deciphering paleoclimate from images of ancient deposits and projecting delta morphologic response to changes in sediment fluxes.

    more » « less
  3. In this paper, we adopt a new perspective on the Multi-Agent Path Finding (MAPF) problem and view it as a Constraint Satisfaction Problem (CSP). A variable corresponds to an agent, its domain is the set of all paths from the start vertex to the goal vertex of the agent, and the constraints allow only conflict-free paths for each pair of agents. Although the domains and constraints are only implicitly defined, this new CSP perspective allows us to use successful techniques from CSP search. With the concomitant idea of using matrix computations for calculating the size of the reduced domain of an uninstantiated variable, we apply Dynamic Variable Ordering and Rapid Random Restarts to the MAPF problem. In our experiments, the resulting simple polynomial-time MAPF solver, called Matrix MAPF solver, either outperforms or matches the performance of many state-of-the-art solvers for the MAPF problem and its variants. 
    more » « less
  4. The MAPF problem is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses and autonomous vehicles. Research on MAPF has been flourishing in the past couple of years. Different MAPF research papers make different assumptions, e.g., whether agents can traverse the same road at the same time, and have different objective functions, e.g., minimize makespan or sum of agents' actions costs. These assumptions and objectives are sometimes implicitly assumed or described informally. This makes it difficult to establish appropriate baselines for comparison in research papers, as well as making it difficult for practitioners to find the papers relevant to their concrete application. This paper aims to fill this gap and support researchers and practitioners by providing a unifying terminology for describing common MAPF assumptions and objectives. In addition, we also provide pointers to two MAPF benchmarks. In particular, we introduce a new grid-based benchmark for MAPF, and demonstrate experimentally that it poses a challenge to contemporary MAPF algorithms. 
    more » « less