- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Wenrui (2)
-
Ma, Mengdi (2)
-
Ozguven, Eren Erman (2)
-
Vijayan, Linoj (2)
-
Yang, Jieya (2)
-
Alisan, Onur (1)
-
Ghorbanzadeh, Mahyar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hurricane-induced storm surge and flooding often lead to the closures of evacuation routes, which can be disruptive for the victims trying to leave the impacted region. This problem becomes even more challenging when we consider the impact of sea level rise that happens due to global warming and other climate-related factors. As such, hurricane-induced storm surge elevations would increase nonlinearly when sea level rise lifts, flooding access to highways and bridge entrances, thereby reducing accessibility for affected census block groups to evacuate to hurricane shelters during hurricane landfall. This happened with the Category 5 Hurricane Michael which swept the east coast of Northwest Florida with long-lasting damage and impact on local communities and infrastructure. In this paper, we propose an integrated methodology that utilizes both sea level rise (SLR) scenario-informed storm surge simulations and floating catchment area models built in Geographical Information Systems (GIS). First, we set up sea level rise scenarios of 0, 0.5, 1, and 1.5 m with a focus on Hurricane Michael’s impact that led to the development of storm surge models. Second, these storm surge simulation outputs are fed into ArcGIS and floating catchment area-based scenarios are created to study the accessibility of shelters. Findings indicate that rural areas lost accessibility faster than urban areas due to a variety of factors including shelter distributions, and roadway closures as spatial accessibility to shelters for offshore populations was rapidly diminishing. We also observed that as inundation level increases, urban census block groups that are closer to the shelters get extremely high accessibility scores through FCA calculations compared to the other block groups. Results of this study could guide and help revise existing strategies for designing emergency response plans and update resilience action policies.more » « less
-
Ghorbanzadeh, Mahyar; Vijayan, Linoj; Yang, Jieya; Ozguven, Eren Erman; Huang, Wenrui; Ma, Mengdi (, ISPRS International Journal of Geo-Information)Hurricane Irma, in 2017, made an unusual landfall in South Florida and the unpredictability of the hurricane’s path challenged the evacuation process seriously and left many evacuees clueless. It was likely to hit Southeast Florida but suddenly shifted its path to the west coast of the peninsula, where the evacuation process had to change immediately without any time for individual decision-making. As such, this study aimed to develop a methodology to integrate evacuation and storm surge modeling with a case study analysis of Irma hitting Southeast Florida. For this purpose, a coupled storm surge and wave finite element model (ADCIRC+SWAN) was used to determine the inundation zones and roadways with higher inundation risk in Broward, Miami-Dade, and Palm Beach counties in Southeast Florida. This was fed into the evacuation modeling to estimate the regional clearance times and shelter availability in the selected counties. Findings show that it takes approximately three days to safely evacuate the populations in the study area. Modeling such integrated simulations before the hurricane hit the state could provide the information people in hurricane-prone areas need to decide to evacuate or not before the mandatory evacuation order is given.more » « less
An official website of the United States government
