- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fan, Tingting (2)
-
He, Yao (2)
-
Liu, Shishi (2)
-
Ma, Yanqin (2)
-
Qi, Yiping (2)
-
Tang, Xu (2)
-
Zhang, Yong (2)
-
An, Xueli (1)
-
Han, Yangshuo (1)
-
Liang, Yanling (1)
-
Qi, Caiyan (1)
-
Wu, Yuechao (1)
-
Yang, Liang (1)
-
Yang, Mengqiao (1)
-
Zhang, Tao (1)
-
Zheng, Xuelian (1)
-
Zhong, Zhaohui (1)
-
Zhou, Jianping (1)
-
Zhu, Meirui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Class 2 Type V‐A CRISPR‐Cas (Cas12a) nucleases are powerful genome editing tools, particularly effective in A/T‐rich genomic regions, complementing the widely used CRISPR‐Cas9 in plants. To enhance the utility of Cas12a, we investigate three Cas12a orthologs—Mb3Cas12a, PrCas12a, and HkCas12a—in plants. Protospacer adjacent motif (PAM) requirements, editing efficiencies, and editing profiles are compared in rice. Among these orthologs, Mb3Cas12a exhibits high editing efficiency at target sites with a simpler, relaxed TTV PAM which is less restrictive than the canonical TTTV PAM of LbCas12a and AsCas12a. To optimize Mb3Cas12a, we develop an efficient single transcription unit (STU) system by refining the linker between Mb3Cas12a and CRISPR RNA (crRNA), nuclear localization signal (NLS), and direct repeat (DR). This optimized system enables precise genome editing in rice, particularly for fine‐tuning target gene expression by editing promoter regions. Further, we introduced Arginine (R) substitutions at Aspartic acid (D) 172, Asparagine (N) 573, and Lysine (K) 579 of Mb3Cas12a, creating two temperature‐tolerant variants: Mb3Cas12a‐R (D172R) and Mb3Cas12a‐RRR (D172R/N573R/K579R). These variants demonstrate significantly improved editing efficiency at lower temperatures (22 °C and 28 °C) in rice cells, with Mb3Cas12a‐RRR showing the best performance. We extend this approach by developing efficient Mb3Cas12a‐RRR STU systems in maize and tomato, achieving biallelic mutants targeting single or multiple genes in T0lines cultivated at 28 °C and 25 °C, respectively. This study significantly expands Cas12a's targeting capabilities in plant genome editing, providing valuable tools for future research and practical applications.more » « less
-
He, Yao; Han, Yangshuo; Ma, Yanqin; Liu, Shishi; Fan, Tingting; Liang, Yanling; Tang, Xu; Zheng, Xuelian; Wu, Yuechao; Zhang, Tao; et al (, Plant Biotechnology Journal)Summary CRISPR‐Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we exploreFaecalibaculum rodentiumCas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5′‐NNTA‐3′ PAM, targeting more abundant palindromic TA sites in plant genomes than the 5′‐NGG‐3′ PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5′‐NNTA‐3′ PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR‐Cas9 system. FrCas9 induces high‐efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2‐FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2‐FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9‐derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C‐to‐T and A‐to‐G base edits in rice plants. Whole‐genome sequencing‐based off‐target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2‐FrCas9 in plants, however, causes detectable guide RNA‐independent off‐target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR‐FrCas9 system for targeted mutagenesis, large deletions, C‐to‐T base editing, and A‐to‐G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR‐FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.more » « less
An official website of the United States government
