Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Summary We investigate optimal subsampling for quantile regression. We derive the asymptotic distribution of a general subsampling estimator and then derive two versions of optimal subsampling probabilities. One version minimizes the trace of the asymptotic variance-covariance matrix for a linearly transformed parameter estimator and the other minimizes that of the original parameter estimator. The former does not depend on the densities of the responses given covariates and is easy to implement. Algorithms based on optimal subsampling probabilities are proposed and asymptotic distributions, and the asymptotic optimality of the resulting estimators are established. Furthermore, we propose an iterative subsampling procedure based on the optimal subsampling probabilities in the linearly transformed parameter estimation which has great scalability to utilize available computational resources. In addition, this procedure yields standard errors for parameter estimators without estimating the densities of the responses given the covariates. We provide numerical examples based on both simulated and real data to illustrate the proposed method.more » « less
-
Summary The problem of estimating the average treatment effects is important when evaluating the effectiveness of medical treatments or social intervention policies. Most of the existing methods for estimating the average treatment effect rely on some parametric assumptions about the propensity score model or the outcome regression model one way or the other. In reality, both models are prone to misspecification, which can have undue influence on the estimated average treatment effect. We propose an alternative robust approach to estimating the average treatment effect based on observational data in the challenging situation when neither a plausible parametric outcome model nor a reliable parametric propensity score model is available. Our estimator can be considered as a robust extension of the popular class of propensity score weighted estimators. This approach has the advantage of being robust, flexible, data adaptive, and it can handle many covariates simultaneously. Adopting a dimension reduction approach, we estimate the propensity score weights semiparametrically by using a non-parametric link function to relate the treatment assignment indicator to a low-dimensional structure of the covariates which are formed typically by several linear combinations of the covariates. We develop a class of consistent estimators for the average treatment effect and study their theoretical properties. We demonstrate the robust performance of the estimators on simulated data and a real data example of investigating the effect of maternal smoking on babies’ birth weight.more » « less
An official website of the United States government
