Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Free, publiclyaccessible full text available May 1, 2023

ABSTRACT We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudoCℓ method and complement the analysis of the twopoint correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important crosscheck. Using the same fiducial Lambda cold dark matter model as in the DES Y3 realspace analysis, we find ${S_8 \equiv \sigma _8 \sqrt{\Omega _{\rm m}/0.3} = 0.793^{+0.038}_{0.025}}$, which further improves to S8 = 0.784 ± 0.026 when including shear ratios. This result is within expected statistical fluctuations from the realspace constraint, and in agreement with DES Y3 analyses of nonGaussian statistics, but favours a slightly higher value of S8, which reduces the tension with the Planck 2018 constraints from 2.3σ in the real space analysis to 1.5σ here. We explore less conservative intrinsic alignments models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include smallmore »Free, publiclyaccessible full text available July 27, 2023

ABSTRACT We develop a novel datadriven method for generating synthetic optical observations of galaxy clusters. In cluster weak lensing, the interplay between analysis choices and systematic effects related to source galaxy selection, shape measurement, and photometric redshift estimation can be best characterized in endtoend tests going from mock observations to recovered cluster masses. To create such test scenarios, we measure and model the photometric properties of galaxy clusters and their sky environments from the Dark Energy Survey Year 3 (DES Y3) data in two bins of cluster richness $\lambda \in [30; 45)$, $\lambda \in [45; 60)$ and three bins in cluster redshift ($z\in [0.3; 0.35)$, $z\in [0.45; 0.5)$ and $z\in [0.6; 0.65)$. Using deepfield imaging data, we extrapolate galaxy populations beyond the limiting magnitude of DES Y3 and calculate the properties of cluster member galaxies via statistical background subtraction. We construct mock galaxy clusters as random draws from a distribution function, and render mock clusters and lineofsight catalogues into synthetic images in the same format as actual survey observations. Synthetic galaxy clusters are generated from real observational data, and thus are independent from the assumptions inherent to cosmological simulations. The recipe can be straightforwardly modified to incorporate extra information, andmore »Free, publiclyaccessible full text available December 9, 2022

Free, publiclyaccessible full text available June 1, 2023

Free, publiclyaccessible full text available June 1, 2023

Free, publiclyaccessible full text available June 1, 2023

ABSTRACT Cosmological information from weak lensing surveys is maximized by sorting source galaxies into tomographic redshift subsamples. Any uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present hyperrank, a new method for marginalizing over redshift distribution uncertainties, using discrete samples from the space of all possible redshift distributions, improving over simple parametrized models. In hyperrank, the set of proposed redshift distributions is ranked according to a small (between one and four) number of summary values, which are then sampled, along with other nuisance parameters and cosmological parameters in the Monte Carlo chain used for inference. This approach can be regarded as a general method for marginalizing over discrete realizations of data vector variation with nuisance parameters, which can consequently be sampled separately from the main parameters of interest, allowing for increased computational efficiency. We focus on the case of weak lensing cosmic shear analyses and demonstrate our method using simulations made for the Dark Energy Survey (DES). We show that the method can correctly and efficiently marginalize over a wide range of models for the redshift distribution uncertainty. Finally, we compare hyperrank to the common meanshifting method of marginalizing over redshift uncertainty, validating thatmore »Free, publiclyaccessible full text available February 11, 2023

ABSTRACT We present the calibration of the Dark Energy Survey Year 3 (DES Y3) weak lensing (WL) source galaxy redshift distributions n(z) from clustering measurements. In particular, we crosscorrelate the WL source galaxies sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) and a spectroscopic sample from BOSS/eBOSS to estimate the redshift distribution of the DES sources sample. Two distinct methods for using the clustering statistics are described. The first uses the clustering information independently to estimate the mean redshift of the source galaxies within a redshift window, as done in the DES Y1 analysis. The second method establishes a likelihood of the clustering data as a function of n(z), which can be incorporated into schemes for generating samples of n(z) subject to combined clustering and photometric constraints. Both methods incorporate marginalization over various astrophysical systematics, including magnification and redshiftdependent galaxymatter bias. We characterize the uncertainties of the methods in simulations; the first method recovers the mean z of tomographic bins to RMS (precision) of ∼0.014. Use of the second method is shown to vastly improve the accuracy of the shape of n(z) derived from photometric data. The two methods are then applied to the DES Y3 data.Free, publiclyaccessible full text available December 24, 2022

Abstract We describe an updated calibration and diagnostic framework, Balrog , used to directly sample the selection and photometric biases of the Dark Energy Survey (DES) Year 3 (Y3) data set. We systematically inject onto the singleepoch images of a random 20% subset of the DES footprint an ensemble of nearly 30 million realistic galaxy models derived from DES Deep Field observations. These augmented images are analyzed in parallel with the original data to automatically inherit measurement systematics that are often too difficult to capture with generative models. The resulting object catalog is a Monte Carlo sampling of the DES transfer function and is used as a powerful diagnostic and calibration tool for a variety of DES Y3 science, particularly for the calibration of the photometric redshifts of distant “source” galaxies and magnification biases of nearer “lens” galaxies. The recovered Balrog injections are shown to closely match the photometric property distributions of the Y3 GOLD catalog, particularly in color, and capture the number density fluctuations from observing conditions of the real data within 1% for a typical galaxy sample. We find that Y3 colors are extremely well calibrated, typically within ∼1–8 mmag, but for a small subset of objects, wemore »Free, publiclyaccessible full text available January 1, 2023

ABSTRACT As the statistical power of galaxy weak lensing reaches per cent level precision, large, realistic, and robust simulations are required to calibrate observational systematics, especially given the increased importance of object blending as survey depths increase. To capture the coupled effects of blending in both shear and photometric redshift calibration, we define the effective redshift distribution for lensing, nγ(z), and describe how to estimate it using image simulations. We use an extensive suite of tailored image simulations to characterize the performance of the shear estimation pipeline applied to the Dark Energy Survey (DES) Year 3 data set. We describe the multiband, multiepoch simulations, and demonstrate their high level of realism through comparisons to the real DES data. We isolate the effects that generate shear calibration biases by running variations on our fiducial simulation, and find that blendingrelated effects are the dominant contribution to the mean multiplicative bias of approximately $2{{\ \rm per\ cent}}$. By generating simulations with input shear signals that vary with redshift, we calibrate biases in our estimation of the effective redshift distribution, and demonstrate the importance of this approach when blending is present. We provide corrected effective redshift distributions that incorporate statistical and systematic uncertainties, ready for usemore »