skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "MacDonald, Andrew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predicting how increasing intensity of human–environment interactions affects pathogen transmission is essential to anticipate changing disease risks and identify appropriate mitigation strategies. Vector-borne diseases (VBDs) are highly responsive to environmental changes, but such responses are notoriously difficult to isolate because pathogen transmission depends on a suite of ecological and social responses in vectors and hosts that may differ across species. Here we use the emerging tools of cumulative pressure mapping and machine learning to better understand how the occurrence of six medically important VBDs, differing in ecology from sylvatic to urban, respond to multidimensional effects of human pressure. We find that not only is human footprint—an index of human pressure, incorporating built environments, energy and transportation infrastructure, agricultural lands and human population density—an important predictor of VBD occurrence, but there are clear thresholds governing the occurrence of different VBDs. Across a spectrum of human pressure, diseases associated with lower human pressure, including malaria, cutaneous leishmaniasis and visceral leishmaniasis, give way to diseases associated with high human pressure, such as dengue, chikungunya and Zika. These heterogeneous responses of VBDs to human pressure highlight thresholds of land-use transitions that may lead to abrupt shifts in infectious disease burdens and public health needs. 
    more » « less
  2. Abstract Understanding the community ecology of vector-borne and zoonotic diseases, and how it may shift transmission risk as it responds to environmental change, has become a central focus in disease ecology. Yet, it has been challenging to link the ecology of disease with reported human incidence. Here, we bridge the gap between local-scale community ecology and large-scale disease epidemiology, drawing from a priori knowledge of tick-pathogen-host ecology to model spatially-explicit Lyme disease (LD) risk, and human Lyme disease incidence (LDI) in California. We first use a species distribution modeling approach to model disease risk with variables capturing climate, vegetation, and ecology of key reservoir host species, and host species richness. We then use our modeled disease risk to predict human disease incidence at the zip code level across California. Our results suggest the ecology of key reservoir hosts—particularly dusky-footed woodrats—is central to disease risk posed by ticks, but that host community richness is not strongly associated with tick infection. Predicted disease risk, which is most strongly influenced by the ecology of dusky-footed woodrats, in turn is a strong predictor of human LDI. This relationship holds in the Wildland-Urban Interface, but not in open access public lands, and is stronger in northern California than in the state as a whole. This suggests peridomestic exposure to infected ticks may be more important to LD epidemiology in California than recreational exposure, and underlines the importance of the community ecology of LD in determining human transmission risk throughout this LD endemic region of far western North America. More targeted tick and pathogen surveillance, coupled with studies of human and tick behavior could improve understanding of key risk factors and inform public health interventions. Moreover, longitudinal surveillance data could further improve forecasts of disease risk in response to global environmental change. 
    more » « less
  3. ABSTRACT. Identifying the effects of environmental change on the transmission of vectorborne and zoonotic diseases is of fundamental importance in the face of rapid global change. Causal inference approaches, including instrumental variable (IV) estimation, hold promise in disentangling plausibly causal relationships from observational data in these complex systems. Valle and Zorello Laporta recently critiqued the application of such approaches in our recent study of the effects of deforestation on malaria transmission in the Brazilian Amazon on the grounds that key statistical assumptions were not met. Here, we respond to this critique by 1) deriving the IV estimator to clarify the assumptions that Valle and Zorello Laporta conflate and misrepresent in their critique, 2) discussing these key assumptions as they relate to our original study and how our original approach reasonably satisfies the assumptions, and 3) presenting model results using alternative instrumental variables that can be argued more strongly satisfy key assumptions, illustrating that our results and original conclusion—that deforestation drives malaria transmission—remain unchanged. 
    more » « less
  4. Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health Organization's Global Burden of Disease study. We used those data to derive the time spent in each component of a pathogen's life cycle, including total time spent in humans versus all environmental stages. We found that nearly all infectious organisms were “environmentally mediated” to some degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to human hosts. Correspondingly, many infectious diseases were primarily controlled through environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were primarily controlled by integrated methods (i.e., combining medical and environmental interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and model interactions between life cycle time scales and infection control strategies. We hope that this synthetic review and associated database serve as a resource for understanding both common patterns among parasites and pathogens and important variability and uncertainty regarding particular infectious diseases. These insights can be used to improve systems-based approaches for controlling environmentally mediated diseases of humans in an era where the environment is rapidly changing. 
    more » « less
  5. Experiments and models suggest that climate affects mosquito-borne disease transmission. However, disease transmission involves complex nonlinear interactions between climate and population dynamics, which makes detecting climate drivers at the population level challenging. By analysing incidence data, estimated susceptible population size, and climate data with methods based on nonlinear time series analysis (collectively referred to as empirical dynamic modelling), we identified drivers and their interactive effects on dengue dynamics in San Juan, Puerto Rico. Climatic forcing arose only when susceptible availability was high: temperature and rainfall had net positive and negative effects respectively. By capturing mechanistic, nonlinear and context-dependent effects of population susceptibility, temperature and rainfall on dengue transmission empirically, our model improves forecast skill over recent, state-of-the-art models for dengue incidence. Together, these results provide empirical evidence that the interdependence of host population susceptibility and climate drives dengue dynamics in a nonlinear and complex, yet predictable way. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Lyme disease is the most common vector‐borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county‐level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate–disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county‐level heterogeneity, but the strongest climate–disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change‐induced increases in Lyme disease burden.

    more » « less