An application of multi‐component milling is described to achieve a decolorization by dismantling the orange‐red zwitterionic cocrystal (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PDA )∙(APAP ) (wherePDA = 2,4‐pyridinedicarboxylic acid,APAP = acetaminophen) using (n,n ′‐BPEBPE =trans ‐1,2‐bis(n ‐pyridylethylene and forn =n ′ = 3 or 4). Each of forms a colorless hydrogen‐bonded cocrystal withn ,n ′‐BPEPDA .Free, publicly-accessible full text available May 17, 2025 -
Abstract Methods to separate molecules (e.g., petrochemicals) are exceedingly important industrially. A common approach for separations is to crystallize a host molecule that either provides an enforced covalent cavity (intrinsic cavity) or packs inefficiently (extrinsic cavity). Here we report a self-assembled molecule with a shape highly biased to completely enclose space and, thereby, pack efficiently yet hosts and allows for the separation of BTEX hydrocarbons (i.e., benzene, toluene, ethylbenzene, xylenes). The host is held together by N → B bonds and forms a diboron assembly with a shape that conforms to a T-shaped pentomino. A T-pentomino is a polyomino, which is a plane figure that tiles a plane without cavities and holes, and we show the molecule to crystallize into one of six polymorphic structures for T-pentomino tiling. The separations occur at mild conditions while rejecting similarly shaped aromatics such as xylene isomers, thiophene, and styrene. Our observation on the structure and tiling of the molecular T-pentomino allows us to develop a theory on how novel synthetic molecules that mimic the structures and packing of polyominoes can be synthesized and—quite counterintuitively—developed into a system of hosts with cavities used for selective and useful separations.
-
Competitive milling (CM) and stability milling (SM) mechanochemical reactions are used to comprehensively assess the relative thermodynamic stabilities and cocrystallization affinities of three pharmaceutical cocrystals (PCCs) of fluoxetine HCl ( X ) with three different pharmaceutically acceptable coformers (PACs, i.e. , benzoic acid ( B ), fumaric acid ( F ), and succinic acid ( S )). CM reactions, which involve milling X in the presence of two or more different PACs, were used to determine cocrystallization affinities, whereas SM reactions, which involve milling a PCC of X with a different coformer, were used to determine relative thermodynamic stabilities. In certain cases, SM reactions exhibited a remarkable solid-state exchange of coformers, yielding new cocrystalline forms. 35 Cl (spin I = 3/2) SSNMR is used as the primary probe of the products of CM and SM reactions, providing a reliable means of identifying and quantifying chloride ions in unique hydrogen bonding environments in each reaction mixture ( 13 C SSNMR spectra and pXRD patterns are used in support of these data). On the basis of these reactions and data, the PAC cocrystallization affinities with X are B > F ≈ S (most to least preferred), and the PCC stabilities are XB > X 2 F ≈ X 2 S (most to least preferred), corresponding to enthalpies of cocrystallization ranked as Δ H CCXB < ≈ . PAC affinities and PCC stabilities were found to be the same for products of analogous slow evaporation experiments and mechanochemical reactions with extended milling times ( i.e. , 90 minutes). Preliminary plane-wave DFT-D2* calculations are supportive of cocrystal formation; however, challenges remain for the quantification of relative enthalpies of cocrystallization. This work demonstrates the great potential of CM and SM reactions for providing pathways to the rational design, discovery, and manufacture of new cocrystalline forms of APIs.more » « less
-
Abstract Mechanochemistry afforded a photoactive cocrystal via coexisting (B)O−H⋅⋅⋅N hydrogen bonds and B←N coordination. Specifically, solvent‐free mechanochemical ball mill grinding and liquid‐assisted grinding of a boronic acid and an alkene resulted in mixtures of hydrogen‐bonded and coordinated complexes akin to mixtures of noncovalent complexes that can be obtained in solution in equilibria processes. The alkenes of the hydrogen‐bonded assembly undergo an intermolecular [2+2] photodimerization in quantitative conversion, effectively reporting the outcome of the self‐assembly processes. Our results suggest that interplay involving noncovalent bonds subjected to mechanochemical conditions can lead to functional solids where, in the current case, the structure composed of the weaker hydrogen bonding interactions predominates.
-
Abstract Mechanochemistry afforded a photoactive cocrystal via coexisting (B)O−H⋅⋅⋅N hydrogen bonds and B←N coordination. Specifically, solvent‐free mechanochemical ball mill grinding and liquid‐assisted grinding of a boronic acid and an alkene resulted in mixtures of hydrogen‐bonded and coordinated complexes akin to mixtures of noncovalent complexes that can be obtained in solution in equilibria processes. The alkenes of the hydrogen‐bonded assembly undergo an intermolecular [2+2] photodimerization in quantitative conversion, effectively reporting the outcome of the self‐assembly processes. Our results suggest that interplay involving noncovalent bonds subjected to mechanochemical conditions can lead to functional solids where, in the current case, the structure composed of the weaker hydrogen bonding interactions predominates.
-
The ditopic halogen-bond (X-bond) donors 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene (1,2-, 1,3-, and 1,4-di-I-tFb, respectively) form binary cocrystals with the unsymmetrical ditopic X-bond acceptor trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpe). The components of each cocrystal (1,2-di-I-tFb)·(2,4-bpe), (1,3-di-I-tFb)·(2,4-bpe), and (1,4-di-I-tFb)·(2,4-bpe) assemble via N···I X-bonds. For (1,2-di-I-tFb)·(2,4-bpe) and (1,3-di-I-tFb)·(2,4-bpe), the X-bond donor supports the C=C bonds of 2,4-bpe to undergo a topochemical [2+2] photodimerization in the solid state: UV-irradiation of each solid resulted in stereospecific, regiospecific, and quantitative photodimerization of 2,4-bpe to the corresponding head-to-tail (ht) or head-to-head (hh) cyclobutane photoproduct, respectively.
-
null (Ed.)Abstract This Account describes work by our research group that highlights opportunities to utilize organoboron molecules to direct chemical reactivity in the organic solid state. Specifically, we convey a previously unexplored use of hydrogen bonding of boronic acids and boron coordination in boronic esters to achieve [2+2]-photocycloadditions in crystalline solids. Organoboron molecules act as templates or ‘shepherds’ to organize alkenes in a suitable geometry to undergo regio- and stereoselective [2+2]-photocycloadditions in quantitative yields. We also provide a selection of publications that served as an inspiration for our strategies and offer challenges and opportunities for future developments of boron in the field of materials and solid-state chemistry. 1 Introduction 1.1 Template Strategy for [2+2]-Photocycloadditions in the Solid State 2 Boronic Acids as Templates for [2+2]-Photocycloadditions in the Solid State 2.1 Supramolecular Catalysis of [2+2]-Photocycloadditions in the Solid State Using Boronic Acids 3 Boronic Esters as Templates for [2+2]-Photocycloadditions in the Solid State 3.1 Application of Photoproducts: Separation of Thiophene from Benzene through Crystallization 3.2 Crystal Reactivity of B←N-Bonded Adducts: The Case of Styrylthiophenes 4 Conclusions and Perspectivesmore » « less
-
null (Ed.)Photoirradiation of a binary cocrystal composed of two different cyclic dienes generates a highly-symmetric cubane-like tetraacid cage regioselectively and in quantitative yield. The cage forms by a double [2+2] photodimerization of one of the diene cocrystal components. The second diene while photostable in the cocrystal reacts in a double [2+2] photodimerization as a pure form quantitatively to form a tetramethyl cubane-like cage. The stereochemistry of the cage is structurally authenticated.more » « less